Many-Valued Logics (Autumn 2013)

Second homework assignment

- Deadline: 19 September at the **beginning** of class.
- Grading is from 0 to 100 points; you get 10 points for free.
- Success!

30 pt Exercise 1. (Embedding into the real interval)

Consider the BL-algebra $\langle C, *, \Rightarrow, \land, \lor, 0, 1 \rangle$ where

1. $C = \{a_n \mid n \in \mathbb{N}\} \bigcup \{b_n \mid n \in \mathbb{N}\}$ where all a_i and b_j are different, and $a_0 = 1$ and $b_0 = 0$.

 a_0

- 2. The order is given by
 - (a) $\forall m, n \in \mathbb{N} \ b_m < a_n$,
 - (b) $\forall m, n \in \mathbb{N} \ a_m < a_n \text{ if, and only if, } m > n,$
 - (c) $\forall m, n \in \mathbb{N}$ $b_m < b_n$ if, and only if, m < n.
- 3. * is defined as
 - (a) $\forall m, n \in \mathbb{N} \ b_m * b_n = 0$,
 - (b) $\forall m, n \in \mathbb{N} \ a_m * a_n = a_{m+n}$,

(c)
$$\forall m, n \in \mathbb{N} \ a_m * b_n = \begin{cases} b_{n-m} & \text{if } m \leq n \\ 0 & \text{otherwise.} \end{cases}$$

4. \Rightarrow is the residuum of *. The operations \land and \lor are, respectively, minimum and maximum w.r.t. the order defined above.

Prove that C cannot be homomorphically embedded in any standard BL-algebra.

20 pt Exercise 2. (Finitely generated BL-algebras)

Recall that an algebra A is called *finitely generated* if there exists a finite set $\{a_1, ..., a_n\} \subseteq A$ such that for any $a \in A$ there exists a term $t(x_1, ..., x_n)$ in the language of A such that $a = t(a_1, ..., a_n)$.

Prove that any linearly ordered finitely generated BL-algebra is the ordinal sum of finitely many **irreducible** components.

30 pt Exercise 3. (Łukasiewicz t-norm)

Prove that the Łukasiewicz t-norm is the only continuous t-norm with a continuous residuum.