Many-Valued Logics (Autumn 2013)

Fourth homework assignment

- Deadline: 3 October - at the beginning of class.
- Grading is from 0 to 100 points; you get 10 points for free.
- Success!

30 pt Exercise 1. (Axiomatic extensions and algebraizability)
Show that if a deductive system \mathcal{S} is algebraizable, then all its axiomatic extensions are also algebraizable.

30 pt Exercise 2. (Sequent calculus)
Prove that the rules $\cdot l, \vee l, \backslash r$, and $\wedge r$ on page 269 of CM5 are invertible i.e., using the other rules of $\mathbf{F L}$ one can prove that from their conclusion the premises follow.

30 pt Exercise 3. (Algebraic Semantics)
Find the lowest classes \mathscr{P}_{n} or \mathscr{N}_{n} in the substructural hierarchy of page 272 of CM5 to which each of these inequalities belong:

- $x(x \backslash y)=x \wedge y$,
- $1 \leq(x \backslash y) \vee(y \backslash x)$,
- $(x \backslash y) \backslash y=(y \backslash x) \backslash x$

