Many-Valued Logics (Autumn 2013)

Sixth homework assignment

- Deadline: 17 October at the **beginning** of class.
- Grading is from 0 to 100 points; you get 10 points for free.
- Success!

30 pt Exercise 1. (Γ functor)

Consider the MV-algebra $\langle C, \oplus, \neg, 0 \rangle$ where

1. $C = \{a_n \mid n \in \mathbb{N}\} \bigcup \{b_n \mid n \in \mathbb{N}\}$ where all a_i and b_j are different, and $a_0 = 1$ and $b_0 = 0$.

 a_0

- 2. The order is given by
 - (a) $\forall m, n \in \mathbb{N} \ b_m < a_n$,
 - (b) $\forall m, n \in \mathbb{N} \ a_m < a_n \text{ if, and only if, } m > n,$
 - (c) $\forall m, n \in \mathbb{N}$ $b_m < b_n$ if, and only if, m < n.
- $3. \oplus \text{ is defined as}$
 - (a) $\forall m, n \in \mathbb{N} \ b_m \oplus b_n = b_{m+n}$,
 - (b) $\forall m, n \in \mathbb{N} \ a_m \oplus a_n = a_0$,

(c)
$$\forall m, n \in \mathbb{N} \ a_m \oplus b_n = \begin{cases} a_{m-n} & \text{if } n \leq m \\ 1 & \text{otherwise.} \end{cases}$$

4. $\neg a_n = b_n$ and $\neg b_m = a_m$.

Describe the unital ℓ -group (G, u) such that $C = \Gamma(G, u)$.

(Hint: a nice description can be given using the lexicoraphic products of ℓ -groups: $G \times F = (G \times F, +, -, \leq, 0)$ where +, -, 0 are defined as in the direct product and $(x_1, x_2) \leq (y_1, y_2)$ iff either $x_1 < y_1$, or $x_1 = y_1$ and $x_2 \leq y_2$.)

Exercise 2. (Standard MV-algebra)

30 pt

Theorem. Let (H,1) and (G,1) be sub- $u\ell$ -groups of $(\mathbb{R},+,-,\leq,0)$. There exists at most one $u\ell$ -homomorphism between H and G and when it exists it must be the identity.

Prove that there is only one isomorphism form the standard MV-algebra [0,1] into itself.

30 pt

Exercise 3. (Standard completeness of Łukasiewicz logic)

Prove that an equation is true in all MV-algebras if, and only if, it is true in the standard MV-algebra [0,1]. (Hint: at some point you may want to use that (i) every linearly ordered abelian group embeds into a *divisible* linearly ordered abelian group, and that (ii) the theory of linearly ordered divisible abelian groups is complete. An abelian group (G, +, -, 0) is divisible if, for every positive integer n and every $g \in G$, there exists $y \in G$ such that ny = g