Many-Valued Logics (Autumn 2013)

Sixth homework assignment

• Deadline: 17 October — at the beginning of class.
• Grading is from 0 to 100 points; you get 10 points for free.
• Success!

Exercise 1. (Γ functor) 30 pt
Consider the MV-algebra \(\langle C, \oplus, \neg, 0 \rangle \) where

1. \(C = \{a_n \mid n \in \mathbb{N}\} \cup \{b_n \mid n \in \mathbb{N}\} \) where all \(a_i \) and \(b_j \) are different, and \(a_0 = 1 \) and \(b_0 = 0 \).

2. The order is given by
 - (a) \(\forall m, n \in \mathbb{N} \quad b_m < a_n \),
 - (b) \(\forall m, n \in \mathbb{N} \quad a_m < a_n \) if, and only if, \(m > n \),
 - (c) \(\forall m, n \in \mathbb{N} \quad b_m < b_n \) if, and only if, \(m < n \).

3. \(\oplus \) is defined as
 - (a) \(\forall m, n \in \mathbb{N} \quad b_m \oplus b_n = b_{m+n} \),
 - (b) \(\forall m, n \in \mathbb{N} \quad a_m \oplus a_n = a_0 \),
 - (c) \(\forall m, n \in \mathbb{N} \quad a_m \oplus b_n = \begin{cases} a_{m-n} & \text{if } n \leq m \\ 1 & \text{otherwise.} \end{cases} \)

4. \(\neg a_n = b_n \) and \(\neg b_m = a_m \).

Describe the unital \(\ell \)-group \((G, u) \) such that \(C = \Gamma(G, u) \).

(Hint: a nice description can be given using the lexicographic products of \(\ell \)-groups: \(G \times F = (G \times F, +, -, \leq, 0) \) where \(+, -, 0 \) are defined as in the direct product and \((x_1, x_2) \leq (y_1, y_2) \) iff either \(x_1 < y_1 \), or \(x_1 = y_1 \) and \(x_2 \leq y_2 \)).

Exercise 2. (Standard MV-algebra) 30 pt
Theorem. Let \((H, 1) \) and \((G, 1) \) be sub-\(u\ell \)-groups of \((\mathbb{R}, +, -, \leq, 0) \). There exists at most one \(u\ell \)-homomorphism between \(H \) and \(G \) and when it exists it must be the identity.

Prove that there is only one isomorphism form the standard MV-algebra \([0,1]\) into itself.
Exercise 3. (Standard completeness of Lukasiewicz logic)
Prove that an equation is true in all MV-algebras if, and only if, it is true in the standard
MV-algebra $[0,1]$. (Hint: at some point you may want to use that (i) every linearly ordered
abelian group embeds into a divisible linearly ordered abelian group, and that (ii) the theory
of linearly ordered divisible abelian groups is complete. An abelian group $(G, +, - , 0)$ is
divisible if, for every positive integer n and every $g \in G$, there exists $y \in G$ such that $ny = g$)