Fuzzy Logic and Algebra An overview

Luca Spada spada@unisi.it

http://homelinux.capitano.unisi.it/~lspada/

Dipartimento di Matematica. Università di Siena

Second MATHLOGAP Workshop Leeds 21-25 August 2006

Overview

Introduction T-norms

2 BL logic

Three important systems

- Göedel Logic
- Product Logic
- Lukasiewicz Logic

Advanced Topic

- Fixed points
- μ ŁΠ logic

3

э.

< 行

The mathematical core of Fuzzy Logic

• Fuzzy Logic has undoubtedly gained an important role in engineering and industry.

This is due to its **flexibility** and **feasibility**.

The mathematical core of Fuzzy Logic

• Fuzzy Logic has undoubtedly gained an important role in engineering and industry.

This is due to its **flexibility** and **feasibility**.

But it lacks a solid mathematical background.
 The aim is to give strong mathematical/logical foundations
 To this end we start back from the core of the logic.

Starting with the connectives

What kind of assumptions have to be made?

• We want to generalize classical logic, expanding its set of truth values.

Starting with the connectives

What kind of assumptions have to be made?

- We want to generalize classical logic, expanding its set of truth values.
- The conjunction has to be: **commutative**, **associative** and **non decreasing** in both arguments.

Starting with the connectives

What kind of assumptions have to be made?

- We want to generalize classical logic, expanding its set of truth values.
- The conjunction has to be: **commutative**, **associative** and **non decreasing** in both arguments.
- If we want a Logic the **conjunction** needs to be **related** with the **implication**

T-norms and their residua

Definition

A t-norm * is a function from $[0,1]^2$ to [0,1] that is

- 1 * x = x and x * 0 = 0
- associative and commutative
- non-decreasing in both argument, i.e x₁ ≤ x₂ implies x₁ * y ≤ x₂ * y and x₁ ≤ x₂ implies y * x₁ ≤ y * x₂

- 3

T-norms and their residua

Definition

A t-norm * is a function from $[0,1]^2$ to [0,1] that is

- 1 * x = x and x * 0 = 0
- associative and commutative
- non-decreasing in both argument, i.e x₁ ≤ x₂ implies x₁ * y ≤ x₂ * y and x₁ ≤ x₂ implies y * x₁ ≤ y * x₂

Definition

Let * be a continuous t-norm. The unique opertation $x \Rightarrow y$ satisfying the following condition:

$$(x*z) \leq y$$
 if and only if $z \leq (x \Rightarrow y)$

namely: $x \Rightarrow y = max\{z \mid x * z \le y\}$ is called the residuum of *

- 31

(日) (周) (三) (三)

 Łukasiewicz t-norm: x * y = max{0, x + y − 1}; and its residuum x ⇒ y = min{1, 1 − x + y}

3

(日) (周) (三) (三)

- Łukasiewicz t-norm: x * y = max{0, x + y − 1}; and its residuum x ⇒ y = min{1, 1 − x + y}
- Gödel t-norm: $x * y = min\{x, y\}$; and its residuum $x \Rightarrow y = \begin{cases} 1 & \text{if } x \le y \\ y & \text{otherwise} \end{cases}$

- 3

< 回 ト < 三 ト < 三 ト

 Łukasiewicz t-norm: x * y = max{0, x + y − 1}; and its residuum x ⇒ y = min{1, 1 − x + y}

• Gödel t-norm: $x * y = min\{x, y\}$; and its residuum $x \Rightarrow y = \begin{cases} 1 & \text{if } x \le y \\ y & \text{otherwise} \end{cases}$

• Product t-norm: $x * y = x \cdot y$; and its residuum $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y/x & \text{otherwise} \end{cases}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 Łukasiewicz t-norm: x * y = max{0, x + y − 1}; and its residuum x ⇒ y = min{1, 1 − x + y}

• Gödel t-norm: $x * y = min\{x, y\}$; and its residuum $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$

• Product t-norm: $x * y = x \cdot y$; and its residuum $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y/x & \text{otherwise} \end{cases}$

Remark. The above three functions form a **complete system** in the sense that every other t-norm is locally isomorphic to them.

Back to the logic

If we fix a t-norm, we fix a **logic system**, letting the t-norm as the truth function of the conjunction

< 67 ▶

Back to the logic

If we fix a t-norm, we fix a **logic system**, letting the t-norm as the truth function of the conjunction

Definition

The propositional calculus PC(*) has propositional variables p_1, \ldots, p_n, \ldots , connectives & and \rightarrow . Formulas are built as usual. Further connectives are defined:

Back to the logic

If we fix a t-norm, we fix a **logic system**, letting the t-norm as the truth function of the conjunction

Definition

The propositional calculus PC(*) has propositional variables p_1, \ldots, p_n, \ldots , connectives & and \rightarrow . Formulas are built as usual. Further connectives are defined:

•
$$\neg \varphi = \varphi \rightarrow 0$$

• $\varphi \leftrightarrow \psi = (\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$
• $\varphi \land \psi = \varphi \& (\varphi \rightarrow \psi)$
• $\varphi \lor \psi = (\varphi \rightarrow \psi) \rightarrow \psi \land (\psi \rightarrow \varphi) \rightarrow \varphi$

Definition

An evaluation e is a function from propositional variables to [0, 1].

3

- 4 同 6 4 日 6 4 日 6

Definition

An evaluation e is a function from propositional variables to [0,1]. It extends in a unique way to formulas according to the following constraints:

•
$$e(0) = 0$$

• $e(\varphi \& \psi) = e(\varphi) * e(\psi)$
• $e(\varphi \rightarrow \psi) = e(\varphi) \Rightarrow e(\psi)$

3 🕨 🖌 3

Definition

An evaluation e is a function from propositional variables to [0,1]. It extends in a unique way to formulas according to the following constraints:

•
$$e(0) = 0$$

• $e(\varphi \& \psi) = e(\varphi) * e(\psi)$
• $e(\varphi \rightarrow \psi) = e(\varphi) \Rightarrow e(\psi)$

3 🕨 🖌 3

Definition

An evaluation e is a function from propositional variables to [0,1]. It extends in a unique way to formulas according to the following constraints:

•
$$e(0) = 0$$

• $e(\varphi \& \psi) = e(\varphi) * e(\psi)$
• $e(\varphi \rightarrow \psi) = e(\varphi) \Rightarrow e(\psi)$

Definition

A formula φ of PC(*) is a 1-tautology iff for any evaluation one has $e(\varphi) = 1$

- 4 目 ト - 4 日 ト - 4 日 ト

BL logic

The aim, then, is to find a calculus for this system

3

3 → 4 3

• • • • • • • •

BL logic

The aim, then, is to find a calculus for this system

Definition

The following are the axioms of **BL Logic**

•
$$(\varphi \to \psi) \to ((\psi \to \theta) \to (\varphi \to \theta))$$

•
$$(\varphi\&\varphi) \to \varphi$$

•
$$(\varphi \& \psi) \rightarrow (\psi \& \varphi)$$

•
$$(\varphi \& (\varphi \to \psi)) \to (\psi \& (\psi \to \varphi))$$

•
$$(\varphi \rightarrow (\psi \rightarrow \theta)) \rightarrow ((\varphi \& \psi) \rightarrow \theta)$$

•
$$((\varphi \to \psi) \to \theta) \to ((\psi \to \varphi) \to \theta) \to \theta)$$

•
$$0 \rightarrow \varphi$$

3

< 回 > < 三 > < 三 >

BL algebras

Definition

A residuated lattice is a structure $\mathcal{A} = \langle A, *, \Rightarrow, \land, \lor, 0, 1 \rangle$

3

イロト イヨト イヨト

BL algebras

Definition

A residuated lattice is a structure $\mathcal{A} = \langle A, *, \Rightarrow, \land, \lor, 0, 1 \rangle$

- $\langle A, \wedge, \vee, 0, 1 \rangle$ is a lattice with greatest and least element being repsectively 1 and 0
- $\langle A, *, 1 \rangle$ is a commutative monoid
- * and \Rightarrow form an adjoint pair, i.e. $z \leq (x \Rightarrow y)$ iff $x * z \leq y$

- 3

< 回 ト < 三 ト < 三 ト

BL algebras

Definition

A residuated lattice is a structure $\mathcal{A} = \langle A, *, \Rightarrow, \land, \lor, 0, 1 \rangle$

- $\langle A, \wedge, \vee, 0, 1 \rangle$ is a lattice with greatest and least element being repsectively 1 and 0
- $\langle A, *, 1
 angle$ is a commutative monoid
- * and \Rightarrow form an adjoint pair, i.e. $z \leq (x \Rightarrow y)$ iff $x * z \leq y$

Definition

A residuated lattice $\mathcal{A} = \langle A, *, \Rightarrow, \land, \lor, 0, 1 \rangle$ is a BL algebra if it satisfies

•
$$x \wedge y = x * (x \Rightarrow y)$$
 (divisibility)

•
$$(x \Rightarrow y) \lor (y \Rightarrow x) = 1$$
 (pre-linearity)

Lindenbaum-Tarski algebra

Definition

Let T be a theory over BL. For each formula φ let $[\varphi]_T$ be the set of formula ψ such that $T \vdash \psi \leftrightarrow \varphi$.

3

(日) (周) (三) (三)

Lindenbaum-Tarski algebra

Definition

Let T be a theory over BL. For each formula φ let $[\varphi]_T$ be the set of formula ψ such that $T \vdash \psi \leftrightarrow \varphi$. Then define

- $0 = [0]_T$
- $1 = [1]_T$
- $[\varphi]_T * [\psi]_T = [\varphi \& \psi]_T$
- $[\varphi]_T \Rightarrow [\psi]_T = [\varphi \to \psi]_T$
- $[\varphi]_T \cap [\psi]_T = [\varphi \land \psi]_T$
- $[\varphi]_T \cup [\psi]_T = [\varphi \lor \psi]_T$

This algebra will be denoted as $\boldsymbol{\mathsf{L}}_{\mathcal{T}}$

3

- ∢ ∃ ▶

Lindenbaum-Tarski algebra

Definition

Let T be a theory over BL. For each formula φ let $[\varphi]_T$ be the set of formula ψ such that $T \vdash \psi \leftrightarrow \varphi$. Then define

- $0 = [0]_T$
- $1 = [1]_T$
- $[\varphi]_T * [\psi]_T = [\varphi \& \psi]_T$
- $[\varphi]_T \Rightarrow [\psi]_T = [\varphi \to \psi]_T$
- $[\varphi]_T \cap [\psi]_T = [\varphi \land \psi]_T$
- $[\varphi]_T \cup [\psi]_T = [\varphi \lor \psi]_T$

This algebra will be denoted as $\boldsymbol{\mathsf{L}}_{\mathcal{T}}$

Lemma

 L_T is a BL algebra

3

(日) (同) (三) (三)

Some Lemma

Definition

Given a lattice L, a filter F is a non empty subset of L s.t.

If $a, b \in F$ then $a \cap b \in F$

If $a \in F$ and $a \leq b$ then $b \in F$

A filter is said to be prime if for any $x, y \in L$ either $(x \Rightarrow y) \in F$ or $(y \Rightarrow x) \in F$

Some Lemma

Lemma

Let L be a BL algebra and F a filter. Let $x \sim_F y$ if, and only if, $(x \Rightarrow y) \in F$ and $(y \Rightarrow x) \in F$ then

- ∼_F is a congruence and the corresponding quotient L/ ∼_F is a BL algebra
- L/\sim_F is linearly ordered iff F is prime

- ∢ ศ⊒ ▶

Some Lemma

Lemma

Let L be a BL algebra and F a filter. Let $x \sim_F y$ if, and only if, $(x \Rightarrow y) \in F$ and $(y \Rightarrow x) \in F$ then

∼_F is a congruence and the corresponding quotient L/ ∼_F is a BL algebra

•
$$L/\sim_F$$
 is linearly ordered iff F is prime

Lemma

Let L be a BL algebra and a \in L, with a \neq 1, then there is a prime filter not containing a

イロト 不得下 イヨト イヨト 二日

Completeness

Theorem

Every BL algebra is the subdirect product of linearly ordered BL algebras

3

A B M A B M

- ∢ ⊢⊒ →

Completeness

Theorem

Every BL algebra is the subdirect product of linearly ordered BL algebras

Theorem

BL algebras are the algebraic semantic for BL logic. Thus a formula φ is provable in the logic BL if, and only if, it holds in every BL algebra

A B M A B M

Completeness

Theorem

Every BL algebra is the subdirect product of linearly ordered BL algebras

Theorem

BL algebras are the algebraic semantic for BL logic. Thus a formula φ is provable in the logic BL if, and only if, it holds in every BL algebra

Theorem (Cignoli et al.)

BL is the logic of all continuous t-norm. In other words a formula φ is provable in the logic BL if, and only if, it holds for every t-norm *

(日) (周) (三) (三)

Summing up

BL logic is hence important for two reasons

 It gives us a formal system to prove properties that are common to all t-norms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BL logic is hence important for two reasons

- It gives us a formal system to prove properties that are common to all t-norms.
- It generalizes the above mentioned three most important t-norm based logics. Indeed one can rescue any of the three logical systems just by adding one axiom to BL.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Reminder

Gödel t-norm is defined as:

$$x * y = min\{x, y\}$$

and its residuum

$$x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$$

3

(日) (周) (三) (三)

Reminder

Gödel t-norm is defined as:

$$x * y = min\{x, y\}$$

and its residuum

$$x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$$

Definition

A Göedel algebra is a BL algebra that satisfies the following axiom

x = x * x

3

< 回 ト < 三 ト < 三 ト

Theorem (Completeness)

The Logic G is sound and complete w.r.t the class of Heiting algebras satisfying prelinearity.

3

- 一司

Theorem (Completeness)

The Logic G is sound and complete w.r.t the class of Heiting algebras satisfying prelinearity.

Theorem (Standard Completeness)

The G is standard complete. In other words, a formula φ is true in $[0,1]_G$ if, and only if, it can be proved in G.

Reminder

Product t-norm is defined as:

$$x * y = x \cdot y$$

and its residuum

$$x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y/x & \text{otherwise} \end{cases}$$

3

イロト イポト イヨト イヨト

Reminder

Product t-norm is defined as:

$$x * y = x \cdot y$$

and its residuum

$$x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y/x & \text{otherwise} \end{cases}$$

Definition

A Π algebra is a BL algebra that satisfies the following axiom

$$(y \Rightarrow 0) \lor ((y \Rightarrow x * y) \Rightarrow x)$$

Luca Spada (Università di Siena)

3

- 4 目 ト - 4 日 ト - 4 日 ト

Theorem (Completeness)

The Logic Π is sound and complete w.r.t the class of Π algebras.

3

∃ ► < ∃ ►</p>

< 一型

Theorem (Completeness)

The Logic Π is sound and complete w.r.t the class of Π algebras.

Theorem (Standard Completeness)

The Π is standard complete. In other words, whenever a formula φ is true in $[0,1]_{\Pi}$ it can be proved in Π .

A B < A B <</p>

Reminder

Łukasiewicz t-norm is defined as:

$$x * y = max\{0, x + y - 1\}$$

and its residuum

$$x \Rightarrow y = min\{1, 1 - x + y\}$$

3

(日) (周) (三) (三)

Reminder

Łukasiewicz t-norm is defined as:

$$x * y = max\{0, x + y - 1\}$$

and its residuum

$$x \Rightarrow y = min\{1, 1 - x + y\}$$

Definition (old style)

Łukasiewicz Logic has the following axioms:

•
$$\varphi \rightarrow (\psi \rightarrow \varphi)$$

• $(\varphi \rightarrow \theta) \rightarrow (\theta \rightarrow \psi) \rightarrow (\varphi \rightarrow \psi)$
• $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$
• $((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow ((\psi \rightarrow \varphi) \rightarrow \varphi)$

э

イロト イヨト イヨト イヨト

MV algebra

Definition

A Łukasiewicz algebra (bka. MV algebra or Wejsbergh algebra, or ...) is a BL algebra that satisfies the following axiom

$$x = (x \Rightarrow 0) \Rightarrow 0$$

3

3 K K 3 K

MV algebra

Definition

A Łukasiewicz algebra (bka. MV algebra or Wejsbergh algebra, or ...) is a BL algebra that satisfies the following axiom

$$x = (x \Rightarrow 0) \Rightarrow 0$$

Theorem (Completeness)

The Logic Ł is sound and complete w.r.t the class of MV algebras.

< 回 ト < 三 ト < 三 ト

MV algebra

Definition

A Łukasiewicz algebra (bka. MV algebra or Wejsbergh algebra, or ...) is a BL algebra that satisfies the following axiom

$$x = (x \Rightarrow 0) \Rightarrow 0$$

Theorem (Completeness)

The Logic Ł is sound and complete w.r.t the class of MV algebras.

Theorem (Standard Completeness)

The calculus \pounds is standard complete. In other words, a formula φ is true in $[0,1]_L$ if, and only if, it can be proved in \pounds .

イロト イポト イヨト イヨト 二日

Definition

A lattice ordered group with a strong unit is a structure $\mathcal{G} = \langle G, +, -, \lor, \land, 0, 1 \rangle$ such that:

3

Definition

A lattice ordered group with a strong unit is a structure $\mathcal{G} = \langle G, +, -, \vee, \wedge, 0, 1 \rangle$ such that:

- $\langle G,+,-,0
 angle$ is an abelian group
- $\langle G, \lor, \land \rangle$ is a lattice
- If \leq denotes the partial order given by \land, \lor then: if $x \leq y$ then $x + z \leq y + z$

- 3

< 回 ト < 三 ト < 三 ト

Definition

A lattice ordered group with a strong unit is a structure $\mathcal{G} = \langle G, +, -, \vee, \wedge, 0, 1 \rangle$ such that:

- $\langle G,+,-,0
 angle$ is an abelian group
- $\langle G, \lor, \land \rangle$ is a lattice
- If \leq denotes the partial order given by \land, \lor then: if $x \leq y$ then $x + z \leq y + z$
- For any $x \in G$ there is $n \in \mathbb{N}$ such that $\underbrace{1 + ... + 1}_{n \text{ times}} \ge x$

- 3

- 4 目 ト - 4 日 ト - 4 日 ト

Definition

A lattice ordered group with a strong unit is a structure $\mathcal{G} = \langle \mathcal{G}, +, -, \vee, \wedge, 0, 1 \rangle$ such that:

- $\langle G,+,-,0
 angle$ is an abelian group
- $\langle G, \lor, \land \rangle$ is a lattice
- If \leq denotes the partial order given by \land, \lor then: if $x \leq y$ then $x + z \leq y + z$
- For any $x \in G$ there is $n \in \mathbb{N}$ such that $\underbrace{1 + ... + 1}_{n \text{ times}} \ge x$

Theorem (Representation)

There is a categorical equivalence between lattice ordered groups with strong unit and MV algebras.

- 3

(日) (周) (三) (三)

Summing up

Connectives can be interpreted (in some case) as continuous functions

(日) (四) (王) (王) (王)

Summing up

- Connectives can be interpreted (in some case) as continuous functions
- O There are important links with other fields of mathematics

Summing up

- Connectives can be interpreted (in some case) as continuous functions
- O There are important links with other fields of mathematics
- These links are important to prove standard completeness but they are also interesting in their own.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fixed points

Our next aim is to introduce fixed point operators in some of the systems seen above. This can be done in two different way:

< 4 ► >

3

Fixed points

Our next aim is to introduce fixed point operators in some of the systems seen above. This can be done in two different way:

- Use known result about Kripke-style semantic for the main t-norm based logic and introduce fixed points like in μ -calculus
- Take advantage from the semantic given by **continuous t-norms** and their residua and use Brouwer theorem to guarantee the existence of fixed points for any formula

글 > - + 글 >

Fixed points

Our next aim is to introduce fixed point operators in some of the systems seen above. This can be done in two different way:

- Use known result about **Kripke-style** semantic for the main t-norm based logic and introduce fixed points like in μ-calculus
- Take advantage from the semantic given by **continuous t-norms** and their residua and use Brouwer theorem to guarantee the existence of fixed points for any formula

(To start with) we chose the most expressive among t-norm based logic

A B M A B M

Definition

The Logic $L\Pi$ is axiomatized as following

• All the axioms of Ł

3

< 回 > < 三 > < 三 >

Definition

The Logic $L\Pi$ is axiomatized as following

- All the axioms of Ł
- All the axioms of Π

3

A B A A B A

< 67 ▶

Definition

The Logic $L\Pi$ is axiomatized as following

- All the axioms of Ł
- All the axioms of Π

•
$$arphi \&_{\mathsf{\Pi}} (\psi \ominus heta) \leftrightarrow_{\mathsf{L}} (arphi \&_{\mathsf{\Pi}} \psi) \ominus (arphi \&_{\mathsf{\Pi}} heta)$$

3

A B A A B A

< 🗗 🕨

Definition

The Logic $L\Pi$ is axiomatized as following

- All the axioms of Ł
- All the axioms of Π
- $\varphi \&_{\Pi}(\psi \ominus \theta) \leftrightarrow_L (\varphi \&_{\Pi} \psi) \ominus (\varphi \&_{\Pi} \theta)$

•
$$\Delta(\varphi \to_L \psi) \to_L (\varphi \to_\Pi \psi)$$

3

A B M A B M

< 67 ▶

Definition

The Logic $L\Pi$ is axiomatized as following

- All the axioms of Ł
- All the axioms of Π
- $\varphi \&_{\Pi}(\psi \ominus \theta) \leftrightarrow_L (\varphi \&_{\Pi} \psi) \ominus (\varphi \&_{\Pi} \theta)$
- $\Delta(\varphi \rightarrow_L \psi) \rightarrow_L (\varphi \rightarrow_\Pi \psi)$
- The rules *Modus Ponens* and *Necessitation* $\frac{\varphi}{\Delta(\varphi)}$

3

Definition

The Logic $L\Pi$ is axiomatized as following

- All the axioms of Ł
- All the axioms of Π
- $\varphi \&_{\Pi}(\psi \ominus \theta) \leftrightarrow_L (\varphi \&_{\Pi} \psi) \ominus (\varphi \&_{\Pi} \theta)$
- $\Delta(\varphi \rightarrow_L \psi) \rightarrow_L (\varphi \rightarrow_\Pi \psi)$
- The rules Modus Ponens and Necessitation $\frac{\varphi}{\Delta(\varphi)}$

Theorem

 $L\Pi$ logic faithful interprets L, Π and G.

3

A B M A B M

Definition

The Fixed Point $L\Pi$ Logic for short) has the following theory:

3

A B A A B A

< 🗗 🕨

Definition

The Fixed Point $L\Pi$ Logic for short) has the following theory:

() All axioms and rules from $L\Pi$ Logic

3

< 一型

B ▶ < B ▶

Definition

The Fixed Point $L\Pi$ Logic for short) has the following theory:

- I All axioms and rules from Ł∏ Logic
- $2 \ \mu x.\varphi(x) \leftrightarrow \varphi(\mu x.\varphi(x))$

3

< 回 > < 三 > < 三 >

Definition

The Fixed Point $L\Pi$ Logic for short) has the following theory:

- All axioms and rules from ŁΠ Logic
- 2 $\mu x.\varphi(x) \leftrightarrow \varphi(\mu x.\varphi(x))$
- $If \varphi(p) \leftrightarrow p \text{ then } \mu x.\varphi(x) \rightarrow p$

3

< 回 ト < 三 ト < 三 ト

Definition

The Fixed Point $L\Pi$ Logic for short) has the following theory:

- All axioms and rules from ŁΠ Logic
- 2 $\mu x.\varphi(x) \leftrightarrow \varphi(\mu x.\varphi(x))$
- **3** If $\varphi(p) \leftrightarrow p$ then $\mu x.\varphi(x) \rightarrow p$
- If $\bigwedge_{i \leq n} (p_i \leftrightarrow q_i)$ then $\mu x.\varphi(p_1,...,p_n) \leftrightarrow \mu x.\varphi(q_1,...,q_n)$

3

Results on $L\Pi$ with fixed points

Theorem

Every linearly ordered $\mu L\Pi$ algebra is isomorphic to the interval algebra of some real closed field.

Results on $L\Pi$ with fixed points

Theorem

Every linearly ordered $\mu L\Pi$ algebra is isomorphic to the interval algebra of some real closed field.

Theorem

 $\mu \pm \Pi$ is standard complete, i.e. a formula φ is a $\mu \pm \Pi$ tautology if, and only if, it is true on the $\mu \pm \Pi$ algebra on [0, 1]
Results on $L\Pi$ with fixed points

Theorem

Every linearly ordered $\mu L\Pi$ algebra is isomorphic to the interval algebra of some real closed field.

Theorem

 $\mu \pm \Pi$ is standard complete, i.e. a formula φ is a $\mu \pm \Pi$ tautology if, and only if, it is true on the $\mu \pm \Pi$ algebra on [0, 1]

Theorem

The category of μ L Π algebras and the category of subdirect products of real closed fields are equivalent.

A B M A B M

Suggested reading

💊 R. Cignoli, I. M. L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning. Trends in Logic, Studia Logica Library 7. Kluwer Academic. 2000.

.

💊 P. Hájek,

Metamathematics of Fuzzy Logic.

Trends in Logic, Studia Logica Library 4. Kluwer Academic, 1998