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The mathematical core of Fuzzy Logic

Fuzzy Logic has undoubtedly gained an important role in engineering
and industry.

This is due to its flexibility and feasibility.

But it lacks a solid mathematical background.

The aim is to give stromg mathematical/logical foundations

To this end we start back from the core of the logic.
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Starting with the connectives

What kind of assumptions have to be made?

We want to generalize classical logic, expanding its set of truth
values.

The conjunction has to be: commutative, associative and non
decreasing in both arguments.

If we want a Logic the conjunction needs to be related with the
implication
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T-norms and their residua

Definition

A t-norm ∗ is a function from [0, 1]2 to [0, 1] that is

1 ∗ x = x and x ∗ 0 = 0

associative and commutative

non-decreasing in both argument, i.e x1 ≤ x2 implies x1 ∗ y ≤ x2 ∗ y
and x1 ≤ x2 implies y ∗ x1 ≤ y ∗ x2

Definition

Let ∗ be a continuous t-norm. The unique opertation x ⇒ y satisfying the
following condition:

(x ∗ z) ≤ y if and only if z ≤ (x ⇒ y)

namely: x ⇒ y = max{z | x ∗ z ≤ y} is called the residuum of ∗
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Examples

 Lukasiewicz t-norm: x ∗ y = max{0, x + y − 1};
and its residuum x ⇒ y = min{1, 1− x + y}

Gödel t-norm: x ∗ y = min{x , y}; and its residuum

x ⇒ y =

{
1 if x ≤ y

y otherwise

Product t-norm: x ∗ y = x · y ; and its residuum

x ⇒ y =

{
1 if x ≤ y

y/x otherwise

Remark. The above three functions form a complete system in the
sense that every other t-norm is locally isomorphic to them.
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Gödel t-norm: x ∗ y = min{x , y}; and its residuum

x ⇒ y =

{
1 if x ≤ y

y otherwise

Product t-norm: x ∗ y = x · y ; and its residuum

x ⇒ y =

{
1 if x ≤ y

y/x otherwise

Remark. The above three functions form a complete system in the
sense that every other t-norm is locally isomorphic to them.
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Back to the logic

If we fix a t-norm, we fix a logic system, letting the t-norm as the truth
function of the conjunction

Definition

The propositional calculus PC(*) has propositional variables p1, . . . , pn, ...,
connectives & and →. Formulas are built as usual. Further connectives are
defined:

¬ϕ = ϕ→ 0

ϕ↔ ψ = (ϕ→ ψ)&(ψ → ϕ)

ϕ ∧ ψ = ϕ&(ϕ→ ψ)

ϕ ∨ ψ = (ϕ→ ψ) → ψ ∧ (ψ → ϕ) → ϕ
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Evaluation

Definition

An evaluation e is a function from propositional variables to [0, 1] .

It
extends in a unique way to formulas according to the following constraints:

e(0) = 0

e(ϕ&ψ) = e(ϕ) ∗ e(ψ)

e(ϕ→ ψ) = e(ϕ) ⇒ e(ψ)

Definition

A formula ϕ of PC(∗) is a 1-tautology iff for any evaluation one has
e(ϕ) = 1
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BL logic

The aim, then, is to find a calculus for this system

Definition

The following are the axioms of BL Logic

(ϕ→ ψ) → ((ψ → θ) → (ϕ→ θ))

(ϕ&ϕ) → ϕ

(ϕ&ψ) → (ψ&ϕ)

(ϕ&(ϕ→ ψ)) → (ψ&(ψ → ϕ))

(ϕ→ (ψ → θ)) → ((ϕ&ψ) → θ)

((ϕ→ ψ) → θ) → ((ψ → ϕ) → θ) → θ)

0 → ϕ
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BL algebras

Definition

A residuated lattice is a structure A = 〈A, ∗,⇒,∧,∨, 0, 1〉

〈A,∧,∨, 0, 1〉 is a lattice with greatest and least element being
repsectively 1 and 0

〈A, ∗, 1〉 is a commutative monoid

∗ and ⇒ form an adjoint pair, i.e. z ≤ (x ⇒ y) iff x ∗ z ≤ y

Definition

A residuated lattice A = 〈A, ∗,⇒,∧,∨, 0, 1〉 is a BL algebra if it satisfies

x ∧ y = x ∗ (x ⇒ y) (divisibility)

(x ⇒ y) ∨ (y ⇒ x) = 1 (pre-linearity)
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Lindenbaum-Tarski algebra

Definition

Let T be a theory over BL. For each formula ϕ let [ϕ]T be the set of
formula ψ such that T ` ψ ↔ ϕ.

Then define

0 = [0]T

1 = [1]T

[ϕ]T ∗ [ψ]T = [ϕ&ψ]T

[ϕ]T ⇒ [ψ]T = [ϕ→ ψ]T

[ϕ]T ∩ [ψ]T = [ϕ ∧ ψ]T

[ϕ]T ∪ [ψ]T = [ϕ ∨ ψ]T

This algebra will be denoted as LT

Lemma

LT is a BL algebra
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Some Lemma

Definition

Given a lattice L, a filter F is a non empty subset of L s.t.

If a, b ∈ F then a ∩ b ∈ F

If a ∈ F and a ≤ b then b ∈ F

A filter is said to be prime if for any x , y ∈ L either (x ⇒ y) ∈ F or
(y ⇒ x) ∈ F
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Some Lemma

Lemma

Let L be a BL algebra and F a filter. Let x ∼F y if, and only if,
(x ⇒ y) ∈ F and (y ⇒ x) ∈ F then

∼F is a congruence and the corresponding quotient L/ ∼F is a BL
algebra

L/ ∼F is linearly ordered iff F is prime

Lemma

Let L be a BL algebra and a ∈ L, with a 6= 1, then there is a prime filter
not containing a
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Completeness

Theorem

Every BL algebra is the subdirect product of linearly ordered BL algebras

Theorem

BL algebras are the algebraic semantic for BL logic. Thus a formula ϕ is
provable in the logic BL if, and only if, it holds in every BL algebra

Theorem (Cignoli et al.)

BL is the logic of all continuous t-norm. In other words a formula ϕ is
provable in the logic BL if, and only if, it holds for every t-norm ∗

Luca Spada (Università di Siena) Fuzzy Logic and Algebra MATHLOGAP 2006 14 / 28



Completeness

Theorem

Every BL algebra is the subdirect product of linearly ordered BL algebras

Theorem

BL algebras are the algebraic semantic for BL logic. Thus a formula ϕ is
provable in the logic BL if, and only if, it holds in every BL algebra

Theorem (Cignoli et al.)

BL is the logic of all continuous t-norm. In other words a formula ϕ is
provable in the logic BL if, and only if, it holds for every t-norm ∗
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Summing up

BL logic is hence important for two reasons
1 It gives us a formal system to prove properties that are common

to all t-norms.

2 It generalizes the above mentioned three most important t-norm
based logics. Indeed one can rescue any of the three logical
systems just by adding one axiom to BL.
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The system G

Reminder

Gödel t-norm is defined as:

x ∗ y = min{x , y}

and its residuum

x ⇒ y =

{
1 if x ≤ y

y otherwise

Definition

A Göedel algebra is a BL algebra that satisfies the following axiom

x = x ∗ x
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A Göedel algebra is a BL algebra that satisfies the following axiom

x = x ∗ x
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The system G

Theorem (Completeness)

The Logic G is sound and complete w.r.t the class of Heiting algebras
satisfying prelinearity.

Theorem (Standard Completeness)

The G is standard complete. In other words, a formula ϕ is true in [0, 1]G
if, and only if, it can be proved in G.
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The system Π

Reminder

Product t-norm is defined as:

x ∗ y = x · y

and its residuum

x ⇒ y =

{
1 if x ≤ y

y/x otherwise

Definition

A Π algebra is a BL algebra that satisfies the following axiom

(y ⇒ 0) ∨ ((y ⇒ x ∗ y) ⇒ x)
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The system Π

Theorem (Completeness)

The Logic Π is sound and complete w.r.t the class of Π algebras.

Theorem (Standard Completeness)

The Π is standard complete. In other words, whenever a formula ϕ is true
in [0, 1]Π it can be proved in Π.
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The system  L

Reminder

 Lukasiewicz t-norm is defined as:

x ∗ y = max{0, x + y − 1}

and its residuum
x ⇒ y = min{1, 1− x + y}

Definition (old style)

 Lukasiewicz Logic has the following axioms:

ϕ→ (ψ → ϕ)

(ϕ→ θ) → (θ → ψ) → (ϕ→ ψ)

(¬ϕ→ ¬ψ) → (ψ → ϕ)

((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ)
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MV algebra

Definition

A  Lukasiewicz algebra (bka. MV algebra or Wejsbergh algebra, or ...) is a
BL algebra that satisfies the following axiom

x = (x ⇒ 0) ⇒ 0

Theorem (Completeness)

The Logic  L is sound and complete w.r.t the class of MV algebras.

Theorem (Standard Completeness)

The calculus  L is standard complete. In other words, a formula ϕ is true
in [0, 1]L if, and only if, it can be proved in  L.

Luca Spada (Università di Siena) Fuzzy Logic and Algebra MATHLOGAP 2006 21 / 28



MV algebra

Definition

A  Lukasiewicz algebra (bka. MV algebra or Wejsbergh algebra, or ...) is a
BL algebra that satisfies the following axiom

x = (x ⇒ 0) ⇒ 0

Theorem (Completeness)

The Logic  L is sound and complete w.r.t the class of MV algebras.

Theorem (Standard Completeness)

The calculus  L is standard complete. In other words, a formula ϕ is true
in [0, 1]L if, and only if, it can be proved in  L.
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Results about  L

Definition

A lattice ordered group with a strong unit is a structure
G = 〈G ,+,−,∨,∧, 0, 1〉 such that:

〈G ,+,−, 0〉 is an abelian group

〈G ,∨,∧〉 is a lattice

If ≤ denotes the partial order given by ∧,∨ then: if x ≤ y then
x + z ≤ y + z

For any x ∈ G there is n ∈ N such that 1 + ...+ 1︸ ︷︷ ︸
n times

≥ x

Theorem (Representation)

There is a categorical equivalence between lattice ordered groups with
strong unit and MV algebras.
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For any x ∈ G there is n ∈ N such that 1 + ...+ 1︸ ︷︷ ︸
n times

≥ x

Theorem (Representation)

There is a categorical equivalence between lattice ordered groups with
strong unit and MV algebras.
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Summing up

1 Connectives can be interpreted (in some case) as continuous
functions

2 There are important links with other fields of mathematics
3 These links are important to prove standard completeness but

they are also interesting in their own.
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Fixed points

Our next aim is to introduce fixed point operators in some of the systems
seen above. This can be done in two different way:

Use known result about Kripke-style semantic for the main t-norm
based logic and introduce fixed points like in µ-calculus

Take advantage from the semantic given by continuous t-norms and
their residua and use Brouwer theorem to guarantee the existence of
fixed points for any formula

(To start with) we chose the most expressive among t-norm based logic
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The system  LΠ

Definition

The Logic  LΠ is axiomatized as following

All the axioms of  L

All the axioms of Π

ϕ&Π(ψ 	 θ) ↔L (ϕ&Πψ)	 (ϕ&Πθ)

∆(ϕ→L ψ) →L (ϕ→Π ψ)

The rules Modus Ponens and Necessitation ϕ
∆(ϕ)

Theorem

 LΠ logic faithful interprets  L, Π and G.
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 LΠ with fixed points

Definition

The Fixed Point  LΠ Logic for short) has the following theory:

1 All axioms and rules from  LΠ Logic

2 µx .ϕ(x) ↔ ϕ(µx .ϕ(x))

3 If ϕ(p) ↔ p then µx .ϕ(x) → p

4 If
∧
i≤n

(pi ↔ qi ) then µx .ϕ(p1, ..., pn) ↔ µx .ϕ(q1, ..., qn)
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Results on  LΠ with fixed points

Theorem

Every linearly ordered µ LΠ algebra is isomorphic to the interval algebra of
some real closed field.

Theorem

µ LΠ is standard complete, i.e. a formula ϕ is a µ LΠ tautology if, and only
if, it is true on the µ LΠ algebra on [0, 1]

Theorem

The category of µ LΠ algebras and the category of subdirect products of
real closed fields are equivalent.
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