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Abstract

We prove that the unification type of  Lukasiewicz (infinite-valued propositional) logic and of its equivalent
algebraic semantics, the variety of MV-algebras, is nullary. The proof rests upon Ghilardi’s algebraic char-
acterisation of unification types in terms of projective objects, recent progress by Cabrer and Mundici in
the investigation of projective MV-algebras, the categorical duality between finitely presented MV-algebras
and rational polyhedra, and, finally, a homotopy-theoretic argument that exploits lifts of continuous maps
to the universal covering space of the circle. We discuss the background to such diverse tools. In particular,
we offer a detailed proof of the duality theorem for finitely presented MV-algebras and rational polyhedra
— a fundamental result that, albeit known to specialists, seems to appear in print here for the first time.
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1. Introduction.

The origins of the theory of unification are usually traced back to the doctoral thesis that Herbrand
defended at the Sorbonne in the summer of 1930; an annotated English translation of its final Chapter 5 is
available in [32, pp. 525–581]. It was only with Robinson’s landmark paper [27] on resolution, however, that
the first unification algorithm with termination and correctness proofs appeared in print. Unification has
attracted continuing interest to this day as a basic tool in automated deduction. The study of unification
modulo an equational theory that grew out of such pioneering works as [26] has acquired increasing signif-
icance in recent years; see the extensive survey [3], and also [2] for a more recent survey focused on modal
logic. The classical, syntactic unification problem is: given two terms s, t (built from function symbols and
variables), find a unifier for them, that is, a uniform replacement of the variables occurring in s and t by
other terms that makes s and t identical. When the latter syntactical identity is replaced by equality modulo
a given equational theory E, one speaks of E-unification. Unsurprisingly, E-unification can be far harder
than syntactic unification even when the theory E comes from the least exotic corners of the mathematical
world. For instance, it may well be impossible to uniformly decide whether two terms admit at least one
unifier, i.e. whether they are unifiable at all; and even when the two terms indeed are unifiable, there may
well be no most general unifier for them, contrary to the situation in the syntactic case. In light of these
considerations, perhaps the most basic piece of information one would like to have about E in connection
with unification issues is its unification type.1 In order to define it precisely, let us recall some standard
notions.

We consider a set F of function symbols — the signature — along with a further set V — the variables;
each function symbol comes with its own arity, an integer n > 0, with n = 0 being included to accommodate
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1Strictly speaking, throughout this paper we are concerned with the elementary unification type of E, meaning that in

unification problems and unifiers we do not allow terms with additional function symbols not included in the signature F of
E; see [3, Definition 3.9].

Preprint submitted to APAL on Tuesday 19th April, 2011



constants. It is usual to require that V be countable. Let us therefore set, once and for all throughout the
paper,

V = {X1, X2, . . .} .

We then let TermV (F ) be the term algebra built from F and V in the usual manner [5, Definition 10.1]. A
substitution2 is a mapping σ : V → TermV (F ) that acts identically to within a finite number of exceptions,
i.e. is such that {X ∈ V | σ(X) 6= X} is a finite set. Substitutions compose in the obvious manner.
By an equational theory over the signature F one means a set E = {(li, ri) | i ∈ I} of pairs of terms
li, ri ∈ TermV (F ), where I is some index set. The set of equations E axiomatises the variety of algebras [5,
Theorem 11.9] consisting of the models of the theory E, written VE .

Now a (symbolic) unification problem modulo E is a finite set of pairs

E = {(sj , tj) | sj , tj ∈ TermV (F ) , j ∈ J} ,

for some finite index set J . A unifier for E is a substitution σ such that

E |= σ(sj) ≈ σ(tj) ,

for each j ∈ J , i.e. such that the equality σ(sj) = σ(tj) holds in every algebra of the variety VE in the
usual universal-algebraic sense [5, p. 78]. The problem E is unifiable if it admits at least one unifier. The
set U(E ) of unifiers for E can be partially ordered as follows. If σ and τ are substitutions and V ⊆ V is a
set of variables, we say that σ is more general3 than τ (with respect to E and V ), written τ �VE σ, if there
exists a substitution ρ such that

E |= τ(X) ≈ (ρ ◦ σ)(X)

holds for every X ∈ V . This amounts to saying that τ is an instantiation of σ, but only to within E-
equivalence, and only as far as the set of variables V is concerned. We endow U(E ) with the relation �VE ,
where V is the set of variables occurring in the terms sj , tj with (sj , tj) ∈ E , as j ranges in J . The relation
�VE is a pre-order. There is an equivalence relation ∼ on U(E ) that identifies σ and τ if and only if τ �VE σ

and σ �VE τ both hold. The quotient set U(E )
∼ carries the canonical partial order 6VE associated to the

pre-order �VE ; by definition, [σ] 6VE [τ ] if and only if σ �VE τ , where [σ] and [τ ] respectively denote the

equivalence classes induced by ∼ of the unifiers σ and τ . We call
(
U(E )
∼ ,6VE

)
the partially ordered set of

unifers for E , even though its elements actually are equivalence classes of unifiers.

The (symbolic) unification type of the unification problem E is:

B unitary, if 6VE admits a maximum [µ] ∈ U(E )
∼ ;

B finitary, if 6VE admits no maximum, but admits finitely many maximal elements [µ1], . . . , [µu] ∈ U(E )
∼

such that every [σ] ∈ U(E )
∼ lies below some [µi];

B infinitary, if 6VE admits infinitely many maximal elements
{

[µi] ∈ U(E )
∼ | i ∈ I

}
, for I an infinite

index set, such that every [σ] ∈ U(E )
∼ lies below some [µi];

B nullary, if none of the preceding cases applies.

2It would be more expedient to define unifiers for E as substitutions having a finite domain coincident with the set of
variables occurring in E . This would perfectly match the definition of the pre-order �V

E on unifiers recalled below, which only
compares unifiers on those variables occurring in E . We have nonetheless chosen to follow [3] in the basic definitions in order
not to depart from established practice; cf. [3, 3.2.1] for a related discussion.

3The convention adopted in [3] is that ‘τ �V
E σ’ means ‘τ is more general than σ’, whereas here we are following [14] in

choosing the opposite reading.
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It is understood that the list above is arranged in decreasing order of desirability. In the best, unitary case,
any element of the maximum equivalence class [µ] is called a most general unifier for E , or mgu for short.
An mgu is then unique up to the relation ∼, whence one speaks of the mgu for E . If [µ], on the other hand,
is maximal but not a maximum, then any element of [µ] is called a maximally general unifier.

The unification type of the equational theory E is now defined to be the worst unification type occurring
among the unification problems E modulo E.

This paper is devoted to an investigation of the unification type of  Lukasiewicz (infinite-valued proposi-
tional) logic, a non-classical system going back to the 1920’s (cf. the early survey [20, §3], and its annotated
English translation in [31, pp. 38–59]).  Lukasiewicz logic may be axiomatised using the primitive connectives
→ (implication) and ¬ (negation) by the four axiom schemata:

(A1) α→ (β → α) ,

(A2) (α→ β)→ ((β → γ)→ (α→ γ)) ,

(A3) (α→ β)→ β)→ ((β → α)→ α) ,

(A4) (¬α→ ¬β)→ (β → α) ,

with modus ponens as the only deduction rule. The semantics of  Lukasiewicz logic is many-valued: as-
signments µ to atomic formulæ range in the unit interval [0, 1] ⊆ R; they are extended compositionally to
compound formulæ via

µ(α→ β) = min {1, 1− µ(α) + µ(β)} ,
µ(¬α) = 1− µ(α) .

Tautologies are defined as those formulæ that evaluate to 1 under every such assignment, and contradictions
are therefore formulæ that constantly evaluate to 0. Completeness of the axioms (A1–A4) with respect to
this semantics was established by syntactic means in [28]. Chang [8] first considered the Tarski-Lindenbaum
algebras of  Lukasiewicz logic, and called them MV-algebras. In [9] he obtained an algebraic proof of the
completeness theorem.

Thanks to almost a century of hindsight, it is by now apparent that  Lukasiewicz’s terse formal system
relates strongly to several traditional fields of mathematics. The standard reference for the elementary
theory is [10], whereas [25] deals with topics at the frontier of current research. Let us recall that an MV-
algebra is an algebraic structure (M,⊕,¬, 0), where 0 ∈ M is a constant, ¬ is a unary operation satisfying
¬¬x = x, ⊕ is a unary operation making (M,⊕, 0) a commutative monoid, the element 1 defined as ¬0
satisfies x⊕ 1 = 1, and the law

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x (*)

holds. Any MV-algebra has an underlying structure of distributive lattice bounded below by 0 and above
by 1. Joins are defined as x ∨ y = ¬(¬x⊕ y)⊕ y. Thus, the characteristic law (*) states that x ∨ y = y ∨ x.
Meets are defined by the de Morgan condition x ∧ y = ¬(¬x ∨ ¬y). To recover the algebraic counterpart
of  Lukasiewicz implication from the MV-algebraic signature, set x → y = ¬x ⊕ y. Conversely, the logical
counterpart of the monoidal operation ⊕ is definable in  Lukasiewicz logic as α⊕β = ¬α→ β. The algebraic
constants 0 and 1 = ¬0 respectively correspond to an arbitrary but fixed contradiction and tautology of the
logic. Boolean algebras are precisely those MV-algebras that are idempotent, meaning that x⊕x = x holds,
or equivalently, that satisfy the tertium non datur law x ∨ ¬x = 1.

Our main result is the following

Theorem. The unification type of the variety of MV-algebras is nullary. Specifically, consider the unification
problem in the language of MV-algebras

E = { (X1 ∨ ¬X1 ∨X2 ∨ ¬X2 , 1) } . (?)

Then the partially ordered set of unifiers for E contains a co-final chain of order-type ω.
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We recall that a subset C of a partially ordered set (P,6) is co-final if for every p ∈ P there is c ∈ C
with p 6 c. By a chain of order-type ω we mean, as usual, a totally ordered set that is order-isomorphic
to the natural numbers with their natural order. In particular, the Theorem implies that no unifier for the
unifiable problem E is maximally general — a condition that is strictly stronger than nullarity.

Because MV-algebras are the equivalent algebraic semantics for  Lukasiewicz logic, in the precise sense
of Blok and Pigozzi [13], the Theorem easily entails an analogous statement for  Lukasiewicz logic. In the
sequel we shall concentrate on the MV-algebraic formulation above.

The interval (of truth values) [0, 1] ⊆ R can be made into an MV-algebra with neutral element 0 by
defining x⊕ y = min {x+ y, 1} and ¬x = 1− x. The underlying lattice order of this MV-algebra coincides
with the natural order that [0, 1] inherits from the real numbers. Each assignment µ : {X1, X2} → [0, 1] can
be identified with the point (µ(X1), µ(X1)) ∈ [0, 1]2 lying in the square [0, 1]2. Moreover, the set of those
assignments µ such that µ(X1 ∨ ¬X1 ∨ X2 ∨ ¬X2) = µ(1) is precisely the boundary B of [0, 1]2; indeed,
for any two terms s and t in the language of MV-algebras, on the preceding definitions we have µ(s ∨ t) =
max{µ(s), µ(t)}, µ(¬s) = 1 − µ(s), and µ(1) = 1. If [0, 1]2 is endowed with its Euclidean metric topology,
then B inherits a subspace topology that makes it homeomorphic to S1 = {(x, y) ∈ R2 | x2 + y2 = 1},
the standard unit circle in the plane. In particular, B is not simply-connected: it is connected, but its
fundamental (Poincaré) group is not trivial. It will transpire from the proof of the Theorem that this
property of B is the deeper reason why (?) has nullary type. To bring algebraic topology to bear on the
proof, however, several diverse tools must be used; we will provide some background as needed. Let us now
discuss the outline of the paper.

Section 2 contains preliminaries. After a brief reminder on MV-algebras (Subsection 2.1) and on projec-
tive objects (Subsection 2.2), in Subsection 2.3 we summarise Ghilardi’s approach to E-unification through
projectivity [14]. A unification problem E as in the above is modelled by the algebra finitely presented by
the relations sj = tj , and a unifier is modelled by a homomorphism u : A→ P , with P a finitely presented
projective algebra P . Unifiers are pre-ordered via comparison arrows. Ghilardi’s main general result [14,
Theorem 4.1], quoted here as Theorem 2.1, is that the algebraic unification type defined along these lines
coincides with the traditional, symbolic unification type, at least for varieties with finite signature. This
important fact underlies our whole paper.

Coupling algebraic unification with Stone-type dualities often leads to decisive topological insight. In [14,
Theorem 5.7], for instance, Ghilardi used the basic duality between finitely presented (=finite) distributive
lattices and finite partially ordered sets to show that the unification type of distributive lattices is nullary.
Here, too, we will dualise the unification problem (?) to prove the Theorem. Specialists know that the full
subcategory of finitely presented MV-algebras is dually equivalent to a category of rational polyhedra whose
morphisms, called Z-maps, are continuous functions with additional properties. Since no published version
of this duality theorem seems to be available, we offer an essentially self-contained proof in Theorem 3.4
of Section 3. Subsection 2.4 contains the required background on polyhedral geometry. In the rest of this
paper we refer to Theorem 3.4 simply as ‘the duality theorem’.

With the duality theorem at our disposal, it is an easy matter to obtain in Subsection 3.4 a dual de-
scription of projective finitely presented MV-algebras. The dual rational polyhedra are precisely those
obtainable as retracts of unit cubes [0, 1]n by Z-maps, for some positive integer n; it follows that they are
simply-connected — unlike B, the one associated with the unification problem (?). The intrinsic charac-
terisation of such retracts (equivalently, of finitely presented projective MV-algebras) is a non-trivial open
problem. Nonetheless, sufficient information for our purposes is already available thanks to the important
advances achieved by Cabrer and Mundici in [7]. The needed result is quoted in Subsection 3.4 as Lemma
3.8.

In Section 4 we show (Theorem 4.1) that 1-variable unification problems in the language of MV-algebras
always have at most two maximally general unifiers that dominate all other unifiers. Although this special
case is relatively simple, it is included here by way of warm-up: the proof uses the same tools applied in the
general case, with the single exception of covering spaces; easy connectedness arguments suffice instead.

In Section 6 we prove the Theorem. We exhibit a sequence of rational polyhedra ti and Z-maps (projec-
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tions) ζi : ti � B (see Figure 1). Each ζi is the dual of a unifier for (?), because ti is the dual of a projective
algebra by Cabrer’s and Mundici’s Lemma 3.8; and, by construction, these unifiers form an increasing se-
quence. Lemma 6.2 shows that the constructed sequence is in fact a strictly increasing, co-final sequence of
unifiers for E . The argument hinges on the lifting properties of a polyhedral model of the universal covering
space of the circle S1; they are proved in Lemmas 5.1 and 5.3 of Section 5. Background notions on covering
spaces are recalled in Subsection 2.5. The Theorem follows upon applying the duality theorem along with
Ghilardi’s Theorem 2.1.

In the final Section 7 we discuss further research.

2. Background and preliminaries.

2.1. MV-algebras.

Morphisms of MV-algebras are homomorphisms, i.e. functions preserving all operations. If θ is a congru-
ence on an MV-algebra M , we write M/θ for the quotient algebra. The equivalence class of 0 with respect
to θ, namely, ker θ = {x ∈ M | x ≡ 0 (mod θ)}, is an ideal of M . The equivalence class of 1 with respect
to θ is a filter of M , and can be expressed as ¬ ker θ = {¬x | x ∈ ker θ}. Both ker θ and ¬ ker θ uniquely
determine θ. Ideals are characterised as the subsets J of M that include 0, are closed under ⊕, and are
lower sets (x ∈ J and y ∈M with y 6 x implies y ∈ J). The usual homomorphism theorems can be proved
for ideals; if M is an MV-algebra and J is an ideal of M , one writes M/J for the quotient algebra.

Since MV-algebras form a variety of algebras, free MV-algebras exist by Birkhoff’s theorem [5, Theorem
10.10]. We write FS for the MV-algebra freely generated by the set S. Recall that FS is characterised
by the following universal property: For every MV-algebra M and every set-theoretic function h̄ : S → M ,
there exists a unique extension of h̄ to a homomorphism of MV-algebras h : FS → M . When S has finite
cardinality n > 0, we write Fn in place of FS , and adopt the convention of identifying S with the set of
“variables” {X1, . . . , Xn}.

As a special case of a universal-algebraic notion (see Subsection 2.3 below), an MV-algebra is finitely
presented if it is (isomorphic to one) of the form Fn/J , where n > 0 is an integer and J is a finitely generated
ideal of Fn. The latter condition means that there is a finite subset F ⊆M such that J is the intersection
of all ideals of Fn containing J . An easy argument proves that the ideal J is finitely generated if and only
it is principal (=singly generated) [10, 1.2.1].

2.2. Projective objects.

An object P in a category is called projective with respect to a class E of morphisms if for any f : A� B
in E and any arrow g : P → B, there exists an arrow h : P → A such that the following diagram commutes.

A

BP

f

g

h

The diagram expresses the so-called projective lifting property (applied to E). The class E may consist of
all epimorphisms, or of epimorphisms qualified in some manner; both regular and strong epimorphisms, for
instance, have been used in the literature. In this paper, objects invariably are algebras in a variety, and
the arrow f : A� B always is taken to be a surjection. It is well known that surjections in a variety are the
same thing as regular epimorphisms, see e.g. [1, (vi) on p. 135].
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An object A in a category is said to be a retract of an object B if there are arrows s : A ↪→ B and
r : B � A such that the following diagram commutes.

A A

B

1A

s r

(The arrow 1A is the identity morphism on A; we adopt this notation throughout for identity morphisms in
a category.) When this is the case, r is called a retraction (of s) and s a section (of r). If the category in
question is a variety, it follows at once that r is surjective, and s is injective.

One checks that on these definitions projective objects in any variety of algebras are stable under retrac-
tions, and they are precisely the retracts of free objects. In particular, free objects are projective.

2.3. Ghilardi’s algebraic unification type.

Let us fix a variety V of algebras, and let us write FI for the free object in V generated by a set I.
Recall that an algebra A of V is finitely presented if it is a quotient of the form A = FI/θ, with I finite
and θ a finitely generated congruence. The elements of I are the generators of A, while any given subset
of pairs (s, t) ∈ θ that generates the congruence θ is traditionally called a set of relators for A. In keeping
with widespread usage we blur the distinction between finitely presented algebras and finitely presentable
algebras, i.e. algebras isomorphic to some finitely presented algebra.

Following [14], by an algebraic unification problem we mean a finitely presented algebra A of V. An
algebraic unifier for A is a homomorphism u : A → P with P a finitely presented projective algebra4 in V;
and A is algebraically unifiable if such an algebraic unifier exists.

Given another algebraic unifier w : A→ Q, we say that u is more general than w, written w � u, if there
is a homomorphism g : P → Q making the following diagram commute.

A

P

Q

u

w

g

The relation � is a pre-order on the set U(A) of algebraic unifiers for A. Let ∼ be the equivalence relation:

u ∼ w if and only if both u � w and and w � u hold. The quotient set U(A)
∼ , whose elements are denoted

[u], is partially ordered by the relation: [w] 6 [u] if and only if w � u.

The algebraic unification type of an algebraically unifiable finitely presented algebra A in the variety V is

now defined exactly as in the symbolic case (see the Introduction), using the partially ordered set
(
U(A)
∼ ,6

)
in place of

(
U(E )
∼ ,6VE

)
. One also defines the algebraic unification type of the variety V in the same fashion.

Theorem 2.1. Given an equational theory E with finite signature F over the set of variables V =
{X1, X2, . . .}, let VE be the variety of algebras axiomatised by E. Let I be a finite set, and consider the
(symbolic) unification problem

E = { (si , ti) | i ∈ I } ,

4It is an exercise to check that the finitely presented algebra P is projective in Vfp — the category of finitely presented
algebras of V and their homomorphisms — if and only if it is projective in V. The expression ‘finitely presented projective
algebra’ is therefore not ambiguous.
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where si, ti ∈ TermV (F ) are terms, and V ⊆ V is the finite set of variables occurring in the terms si, ti as
i ranges in I. Let A be the algebra of VE finitely presented by the relators E over the generators in V .

Then E is unifiable if and only if A is algebraically unifiable. Further, the partially ordered sets
(
U(A)
∼ ,6

)
of algebraic unifiers for A, and

(
U(E )
∼ ,6VE

)
of unifiers for E , are isomorphic. In particular, the unification

type of E and the algebraic unification type of VE coincide.

Proof. This is Ghilardi’s theorem [14, Theorem 4.1], stated in a form that is expedient for the sequel.

Remark 2.2. Although in this paper the category under investigation is a variety of finite signature, it
would be misleading to suggest that Ghilardi’s approach to unification is restricted to universal-algebraic
contexts. Indeed, let us explicitly point out how one can define the unification type of an arbitrary locally
small category C. (Recall that C is locally small if its hom-sets are sets rather than proper classes.) The
following basic concept is due to the work of Gabriel and Ulmer [12]: an object A of C is finitely presentable if
the covariant hom-functor HomC(A,−) : C→ Set preserves filtered colimits. An object P in C is standardly
defined to be (regular) projective if P has the projective lifting property of Subsection 2.2, applied to
(regular) epimorphisms f : A � B. With these notions available, one can define the unification type of C
precisely as was done in the above for a variety, after Ghilardi’s ideas. By a non-trivial result of Gabriel
and Ulmer (see [1, Theorem 3.12] for an accessible proof), when C happens to be the category of algebras
and homomorphisms of a variety V, then the Gabriel-Ulmer finitely presentable objects of C coincide with
the algebras in V that are isomorphic to some finitely presented algebra. Thus the categorial, algebraic,
and symbolic unification types of a variety all coincide — provided ‘projective’ means ‘regular projective’,
as in this paper. By contrast, such an abstraction of unification theory at the level of general categories is
less viable for those approaches that use free algebras in place of projective ones: indeed, the requirement
that C admits free objects (i.e. a forgetful functor to the category of sets, along with a left adjoint) is quite
strong, and leaves us relatively close to algebraic categories; see e.g. [21, Chapter VI].

2.4. Rational polyhedral geometry.

Throughout this subsection, let us fix an integer d > 0 as the dimension of the real vector space Rd. A
convex combination of a finite set of vectors v1, . . . , vu ∈ Rd is any vector of the form λ1v1 + · · ·+ λuvu, for
non-negative real numbers λi > 0 satisfying

∑u
i=1 λi = 1. If S ⊆ Rd is any subset, we let convS denote

the convex hull of S, i.e. the collection of all convex combinations of finite sets of vectors v1, . . . , vu ∈ S.
A polytope is any subset of Rd of the form convS, for some finite S ⊆ Rd, and a (compact) polyhedron is
a union of finitely many polytopes in Rd. A polytope is rational if it may be written in the form convS
for some finite set S ⊆ Qd ⊆ Rd of vectors with rational coordinates. Similarly, a polyhedron is rational if
it may be written as a union of finitely many rational polytopes. The dimension of a polyhedron P is the
dimension of its affine hull, i.e. the affine subspace of Rd given by the intersection of all affine subspaces
that contain P .

Recall that the vectors v0, v1, . . . , vu ∈ Rd are affinely independent if {v1 − v0, v2 − v0, . . . , vu − v0} is a
linearly independent set. A polytope that may be written as σ = convS, for S = {v0, v1, . . . , vu} a finite
set of affinely independent vectors, is a (u-dimensional) simplex, or a u-simplex for short; S is then the
(uniquely determined) set of vertices of σ. The simplex σ is rational if S ⊆ Qd. A (w-dimensional) face of
σ is any simplex of the form convS′, for S′ ⊆ S a set of cardinality w + 1. A (rational) simplicial complex
in Rd is a finite collection Σ of (rational) simplices in Rd such that any two simplices in Σ intersect in a
common face. (This includes the case that the two simplices are disjoint: then, and only then, they intersect
in ∅, their unique common −1-dimensional face.) The dimension of Σ is the maximum of the dimensions of
its simplices. The simplices of Σ having dimension 0 are its vertices. The support, or underlying polyhedron,
of Σ is |Σ| =

⋃
σ∈Σ σ. It indeed is a (rational) polyhedron, by definition. Conversely, it is a basic fact that

every (rational) polyhedron P is the support of some (rational) simplicial complex Σ; see e.g. [29, 2.11].

If v ∈ Qd ⊆ Rd, there is a unique way to write out v in coordinates as

v = (
p1

q1
, . . . ,

pd
qd

) , pi, qi ∈ Q , qi > 0 , pi and qi relatively prime for each i = 1, . . . , d .
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Setting q = lcm {q1, q2, . . . , qd}, the homogeneous correspondent of v is defined to be the integer vector

ṽ = (
qp1

q1
, . . . ,

qpd
qd
, q) ∈ Zd+1 .

The positive integer q is then called the denominator of v, written den v. Clearly, den v = 1 if and only if
v has integers coordinates; following traditional terminology in the geometry of numbers, we call such v a
lattice point. A rational u-dimensional simplex with vertices v0, . . . , vu is unimodular if the set {ṽ0, . . . , ṽu}
can be completed to a Z-module basis of Zd+1; equivalently, if there is a (d + 1) × (d + 1) matrix with
integer entries whose first u columns are ṽ0, . . . , ṽu, and whose determinant is ±1. A simplicial complex is
unimodular if each one of its simplices is unimodular.

Lemma 2.3. Any rational polyhedron P ⊆ Rd is the support of a unimodular simplicial complex.

Proof. This is proved in [24, 1.2] for P ⊆ [0, 1]d as an application of Blichfeldt’s lemma in the geometry of
numbers: a bounded open set in Rd whose Lebesgue measure is > 1 contains a pair of distinct vectors whose
difference is a lattice point; see e.g. [30, Lemma 1 on p. 13]. The same proof goes through for P ⊆ Rd,
mutatis mutandis.

Throughout, the adjective ‘linear’ is to be understood as ‘affine linear’. A function f : Rd → R is piecewise
linear if it is continuous (with respect to the Euclidean topology on Rd and R), and there is a finite set of
linear functions l1, . . . , lu such that for each x ∈ Rd one has f(x) = li for some choice of i = 1, . . . , u. If,
moreover, each li can be written as a linear polynomial with integer coefficients, then f is a Z-function (or Z-
map). For an integer d′ > 0, a function λ = (λ1, . . . , λd′) : Rd → Rd′ is a piecewise linear map (respectively,
a Z-map) if each one of its scalar components λj : Rd → R is a piecewise linear function (Z-function). We

now define piecewise linear maps (Z-maps) A→ B for arbitrary subsets A ⊆ Rd, B ⊆ Rd′ as the restriction
and co-restriction of piecewise linear maps (Z-maps) Rd → Rd′ .

When the spaces at issue are rational polyhedra, a useful equivalent to the preceding definition of Z-map
is available.

Lemma 2.4. Let P ⊆ Rd be a rational polyhedron, and let f : P → R be a continuous function. Then the
following are equivalent.

1. f is a Z-function.

2. There exist finitely many linear polynomials with integer coefficients l1, . . . , lu : Rd → R such that, for
each p ∈ P , f(p) = lip(p) for some ip ∈ {1, . . . , u}.

Proof. (1 ⇒ 2) Trivial.

(2 ⇒ 1) See the proof in [25, 3.1 and 3.2] for the case P ⊆ [0, 1]d, of which the case P ⊆ Rd is a
variant.

It is not hard to show that the composition of Z-maps between rational polyhedra is again a Z-map. A
Z-map λ : A→ B between rational polyhedra A ⊆ Rd and B ⊆ Rd′ is a Z-homeomorphism if there exists a
Z-map λ′ : B → A such that λ◦λ′ = 1B and λ′ ◦λ = 1A. In other words, a Z-map is a Z-homeomorphism if
it is a homeomorphim whose inverse is a Z-map, too. With these definitions, rational polyhedra and Z-maps
form a category.

Finally, we shall need the following lemma that relates the vanishing locus of Z-functions to rational
polyhedra.

Lemma 2.5. For any subset S ⊆ [0, 1]d, the following are equivalent.

1. S is a rational polyhedron.

2. There is a Z-function θ : [0, 1]d → [0, 1] vanishing precisely on S, that is, such that θ−1(0) = S.

Proof. This is proved in [22, Proposition 5.1].
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2.5. The universal cover of the circle.

Let us recall some standard notions from algebraic topology; we refer to [16] for details.
A path in a space X is a continuous map f : [0, 1] → X; the endpoints of f are f(0) and f(1). A space

X is path-connected if for any x0, x1 ∈ X there is a path in X with endpoints x0, x1. On the other hand, X
is locally path-connected if each point has arbitrarily small open neighbourhoods that are path-connected;
that is, for each y ∈ X and each neighbourhood U of y there is a path-connected open neighbourhood of y
contained in U . It is not hard to prove that polyhedra are locally path-connected (in fact, locally contractible
by [16, Proposition A.1]), and therefore that a polyhedron is connected if and only if it is path-connected.
We shall assume these statements in the following; none of them, of course, need to hold for more general
spaces.

Two paths f, g : [0, 1] → X with common endpoints x0 and x1 are homotopic if there is a homotopy of
paths connecting them, i.e. a continuous function h : [0, 1]2 → X such that h(s, 1) = f(s) and h(s, 0) = g(s)
for all s ∈ [0, 1], while h(0, t) = x0, h(1, t) = x1 for all t ∈ [0, 1]. Homotopy of paths is an equivalence
relation [16, Proposition 1.2]. A loop in X based at x0 ∈ X is a path f : [0, 1]→ X with f(0) = f(1) = x0.
The fundamental group of a space X at x0 ∈ X, denoted π1(X,x0), is the set of equivalence classes of
loops in X based at x0 ∈ X under the equivalence relation of homotopy of paths. It indeed is a group
upon associating to two paths f, g a third path g · f that traverses the union of the ranges of f and g in
that order, at twice the original speed; see [16, Proposition 1.3]. When X is path-connected, the choice of
basepoint is immaterial, and the fundamental group is denoted π1(X). A space X is simply-connected if
it is path-connected, and π1(X) is the trivial (singleton) group. Also recall that the fundamental group is
actually a (covariant) functor from the category of topological spaces with a distinguished basepoint and
their basepoint-preserving continuous maps, to the category of groups and their homomorphisms. See [16,
p. 34 and ff.].

A covering space [16, Section 1.3] of a topological space X is a space X̃ together with a surjective
continuous map p : X̃ � X, called a covering map, such that there is a open covering {Oi} of X, with i
ranging in some index set I, satisfying the following condition: for each i ∈ I the inverse image p−1(Oi) is
a disjoint union of open sets in X̃, each of which is mapped homeomorphically by p onto Oi.

If p : X̃ → X is a covering map of the space X, and if Y is any space, a continuous map f : Y → X is
said to lift to p (or, more informally, to X̃, when p is understood), if there is a continuous map f̃ : Y → X̃
such that p ◦ f̃ = f . Any such f̃ is then called a lift of f . In the next lemma we recall two important
properties of covering maps with respect to lifts that we will use in Section 5.

Lemma 2.6. Given topological spaces X and X̃, suppose that p : X̃ → X is a covering map. Further, let Y
be a topological space, and let f : Y → X be a continuous map. Then the following hold.

1. (Unique lifting property.) Assume Y is connected. If f̃ , f̃ ′ : Y → X are two lifts of f that agree at one
point of Y , then f̃ = f̃ ′.

2. (Lifting property of simply-connected polyhedra.) If, additionally, Y is a simply-connected polyhedron,
then a lift of f does exist. In fact, for any point y ∈ Y , and for any point x̃ ∈ X̃ lying in the fibre over
f(y), i.e. such that p(x̃) = f(y), there is a lift f̃ of f such that f̃(y) = x̃.

Proof. 1. This is [16, Proposition 1.34].

2. As a special case of the general lifting criterion proved in [16, Proposition 1.33], we only need check
that Y is both path-connected and locally path-connected. But since we are assuming that Y is simply-
connected, it is path-connected by definition; and since it is a polyhedron, it is locally path-connected,
too.

Under appropriate conditions,5 the space X has a simply-connected covering space called its universal
cover. The universal cover of X is a covering space of every other path-connected covering space of X, and
is essentially unique: indeed, it can be characterised by a universal property. See [16, Theorem 1.38].

5Namely, that X is path-connected, locally path-connected, and semilocally simply-connected; see again [16] for details.
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Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle in the Euclidean plane R2, and let χ : R → S1

be the continuous function given by
t 7→ (cos 2πt, sin 2πt) .

Upon embedding R into R3 as a helix H via t 7→ (cos 2πt, sin 2πt, t), χ acts on H as the orthogonal projection
onto S1 along the z-axis. The surjective map

χ : R� S1

is the universal covering map of the circle, and R is the universal cover of S1; they will play a prominent
rôle in the proof of the Theorem.

3. Duality for finitely presented MV-algebras and rational polyhedra.

3.1. Construction of the functor M : Objects.

Let S be any subset of Rn, for some integer n > 0. Let us write M (S) for the collection of all Z-
maps S → [0, 1]. Regarding [0, 1] as an MV-algebra with neutral element 0 under the operations x ⊕ y =
min {x+ y, 1} and ¬x = 1 − x, for x, y ∈ [0, 1], we can pull back an MV-algebraic structure on M (S) by
defining operations pointwise. Specifically, let us define the functions 0, ¬f, f ⊕ g : S → [0, 1], for each
f, g ∈M (S), by

0(x) = 0 ,

(¬f)(x) = ¬(f(x)) = 1− f(x) ,

(f ⊕ g)(x) = f(x)⊕ g(y) = min {f(x) + g(x), 1} ,

for x, y ∈ S. With these definitions,
M (S) ≡ (M (S),⊕,¬,0)

is an MV-algebra. In what follows, we shall always tacitly regard M (S) as an MV-algebra in this manner.

The MV-algebras of the form M (P ), for P a rational polyhedron in [0, 1]n, have a well-known charac-
terisation. We begin with the case that P is a whole unit cube. Let us write ξi : [0, 1]n � [0, 1], i = 1, . . . , n,
for the projection (x1, . . . , xn) 7→ xi.

Lemma 3.1. For any integer n > 0, the projection functions ξ1, . . . , ξn generate M ([0, 1]n) freely.

Proof. This is [10, 9.1.5].

Recall from Subsection 2.1 that we write Fn, where n > 0 is an integer, for the MV-algebra freely
generated by the set {X1, . . . , Xn}. If s = s(X1, . . . , Xn) is an element of Fn, in light of Lemma 3.1 we can
write s(ξ1, . . . , ξn) for the unique element of M ([0, 1]n) corresponding to s via the unique isomorphism that
extends the assignment Xi 7→ ξi, i = 1, . . . , n. For general rational polyhedra in [0, 1]n, we have:

Lemma 3.2. For any integer n > 0 and for any congruence θ on the free MV-algebra Fn, the following are
equivalent.

1. The congruence θ is finitely generated.

2. The set ker θ = {g ∈ Fn | g ≡ 0 (mod θ)} is a principal ideal of Fn.

3. There is a rational polyhedron P ⊆ [0, 1]n such that Fn/θ ∼= M (P ) via an isomorphism of MV-algebras
that extends the map

Xi/θ 7−→ ξi � P , i = 1, . . . , n ,

where ξi � P denotes the restriction of ξi to P .
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4. The solution set of θ in [0, 1]n, namely,

{x ∈ [0, 1]n | s(ξ1(x), . . . , ξn(x)) = t(ξ1(x), . . . , ξn(x)) for each (s, t) ∈ θ} ,

is a rational polyhedron.

Proof. The equivalence (1 ⇔ 2) is an elementary exercise on MV-algebras, see [10, 1.2.1 and 1.2.6]. The
equivalence (2 ⇔ 3) is [6, Lemma 2.5], or (in the language of unital Abelian lattice-ordered groups) [22, (i
⇔ ii) in Corollary 5.2]. Finally, (3⇔ 4) is a rephrasing of the equivalence (2⇔ 3) that uses Lemma 3.1.

3.2. Construction of the functor M : Arrows.

Let P ⊆ Rm and Q ⊆ Rn be rational polyhedra, for integers m,n > 0. Let λ : P → Q be a Z-map. Then
there is an induced function

M (λ) : M (Q)→M (P )

given by

f ∈M (Q)
M (λ)7→ f ◦ λ ∈M (P ) .

Observe that the codomain of M (λ) indeed is M (P ): the composition f ◦ λ of Z-maps is again a Z-map,
and since the range of f is contained in [0, 1], so is the range of f ◦ λ.

Lemma 3.3. Let λ : P → Q be a Z-map between rational polyhedra P ⊆ Rm and Q ⊆ Rn, for integers
m,n > 0. Then M (λ) : M (Q)→M (P ) is a homomorphism of MV-algebras.

Proof. It is clear that M (λ)(0) = 0 ◦λ = 0. Let f, g ∈M (Q). For each x ∈ P , writing 1 = ¬0 : M (Q)→
[0, 1] for the function constantly equal to 1, we compute

( M (λ)(¬f) )(x) = ( (¬f) ◦ λ )(x) = ¬f(λ(x)) = 1− ( f ◦ λ )(x) = ( 1− ( M (λ)(f) ) )(x) =

= (¬( M (λ(f)) ) )(x) .

Further, let us write + and min, respectively, for pointwise addition and minimum of pairs of real-valued
functions. Then:

( M (λ)(f ⊕ g) )(x) = ( (f ⊕ g) ◦ λ )(x) = ( f ⊕ g )(λ(x)) = min {f(λ(x)) + g(λ(x)) , 1} =

= ( min {(f ◦ λ) + (g ◦ λ) , 1} )(x) = (min {(M (λ)(f)) + (M (λ)(g)) , 1})(x) =

= ( (M (λ)(f))⊕ (M (λ)(g)) )(x) .

This proves that M (λ) is a homomorphism of MV-algebras.

3.3. The duality theorem.

Recall [21, p. 14–15] that a functor between locally small categories is faithful (respectively, full) if it
acts injectively (respectively, surjectively) on hom-sets, and it is essentially surjective if every object in the
target category is isomorphic to some object in the range of the functor. A pair S : C → D, T : D → C of
functors is an equivalence of categories (and the categories C and D are equivalent) if T ◦ S and S ◦ T are
naturally isomorphic to the identity functors on C and D, respectively [21, p. 93]. A well-known result [21,
Theorem 1 on p. 93] is to the effect that a full, faithful, essentially surjective functor S has an adjoint T
such that the pair S, T is an equivalence of categories.

A straightforward consequence of Lemmas 3.2 and 3.3 is that M is a functor from the category PZ of
rational polyhedra, and the Z-maps among them, to the opposite of the category MVfp of finitely presented
MV-algebras, and their homomorphisms. Much more is true.

Theorem 3.4 (Duality theorem for finitely presented MV-algebras). The functor M : PZ → MVop
fp is full,

faithful, and essentially surjective. Hence, the categories MVfp and PZ are dually equivalent.
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Proof. That M is essentially surjective follows at once from (1⇔ 3) in Lemma 3.2. To prove the other two
properties, we first settle:

Claim 3.5. Let R ⊆ Rn be a rational polyhedron, for some integer n > 0. Then there exist an integer d > 0,
a rational polyhedron P ⊆ [0, 1]d, and a Z-homeomorphism λ : R→ P .

Proof of Claim 3.5. The rational polyhedron R has a unimodular triangulation Σ by Lemma 2.3. Let
v1, . . . , vd be the vertices of Σ, and let e1, . . . , ed be the standard basis of Rd. Writing den vi as usual for the
denominator of vi, we set ēi = ei/ den vi ∈ [0, 1]d, for i = 1, . . . , d, so that den ēi = den vi. Let us further set

I = { {i1, . . . , iu} | 1 6 i1 < · · · < iu 6 d and conv {vi1 , . . . viu} ∈ Σ } .

Let ∆ be the set of simplices in [0, 1]d given by

∆ = { conv {ēi1 , . . . , ēiu} | {i1, . . . , iu} ∈ I } .

It is then easy to check that ∆ is a simplicial complex (because Σ is), and that ∆ is unimodular (because
of our choice of the vertices of ∆ as renormalised vectors of the standard basis). We need to show that |Σ|
and |∆| are Z-homeomorphic. For this, let us consider first the function

λ̄ : {v1, . . . , vd} → {ē1, . . . , ēd}

given by

vi
λ̄7−→ ēi , for each i = 1, . . . , d.

By our definition of ∆, λ̄ induces the inclusion-preserving bijection from Σ to ∆ given by

conv {vi1 , . . . , viu} ∈ Σ 7→ conv {ēi1 , . . . , ēiu} ∈ ∆ .

Therefore [29, Exercise on p. 17, and 2.18], λ̄ also induces by linear extension a unique piecewise linear
homeomorphism

λ : |Σ| → |∆| ,

namely, the unique such map that is linear over each simplex of Σ, and agrees with λ̄ on the vertices
of Σ. Using Lemma 2.4, a simple computation in linear algebra shows that our renormalisation of each
ei to ēi guarantees that λ is in fact a Z-map. By the same token, the inverse function λ̄−1 induces an
inclusion-preserving bijection from ∆ to Σ, and then by linear extension a unique Z-map

λ′ : |∆| → |Σ| .

By construction, λ′ ◦ λ and λ ◦ λ′ are the identity maps on |Σ| and |∆|, respectively, so that λ is a Z-
homeomorphism. Taking P = |∆| settles the claim.

To check that M is faithful, let λ1, λ2 : P → Q be Z-maps between rational polyhedra P ⊆ Rm and
Q ⊆ Rn, for integers m,n > 0. By Lemma 3.3, M (λ1), M (λ2) : M (Q) →M (P ) are homomorphisms of
MV-algebras. We first show that it is enough to prove faithfulness when Q lies in a unit cube. For this,
using Claim 3.5 we choose a Z-homeomorphism

γ : Q→ Q′ , (1)

where Q′ ⊆ [0, 1]n
′

is a rational polyhedron, for some integer n′ > 0. Then by composition we get Z-maps

λ′1 = γ ◦ λ1 : P → Q′

λ′2 = γ ◦ λ2 : P → Q′ .

But now λ′1 = λ′2 if and only if γ ◦ λ1 = γ ◦ λ2 if and only if γ−1 ◦ (γ ◦ λ1) = γ−1 ◦ (γ ◦ λ2) if and only if
λ1 = λ2, as was to be shown. Hence we shall safely assume Q ⊆ [0, 1]n.
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Suppose there is p ∈ P such that λ1(p) = (x1, . . . , xn) 6= (x′1, . . . , x
′
n) = λ2(p); without loss of generality,

say x1 6= x′1. Consider the projection ξ∗1 : Q → [0, 1] onto the first coordinate. Then ξ∗1 ∈ M (Q) because
Q ⊆ [0, 1]n. We have

( M (λ1)(ξ∗1) )(p) = ξ∗1(λ1(p)) = x1 ,

whereas
( M (λ2)(ξ∗1) )(p) = ξ∗1(λ2(p)) = x′1 .

Hence M (λ1) disagrees with M (λ2) at ξ∗1 because x1 6= x′1 by assumption. This shows that M is faithful.

To show that M is full, we consider a homomorphism h : M (Q)→M (P ), with P ⊆ Rm and Q ⊆ Rn
rational polyhedra, and prove that there exists a Z-map λ : P → Q such that M (λ) = h. We first perform
a reduction to the case when Q lies in a unit cube. Let γ be the Z-homeomorphism in (1), and set

h′ = h ◦M (γ) : M (Q′)→M (P ) .

Assume further that there is a Z-map λ′ : P → Q′ such that M (λ′) = h′. Then the Z-map λ = γ−1◦λ′ : P →
Q satisfies

M (λ) = M (λ′) ◦M (γ−1) = h′ ◦M (γ−1) = h ◦ (M (γ) ◦M (γ−1)) = h ◦ (M (γ−1 ◦ γ)) = h .

Hence we may safely assume that Q ⊆ [0, 1]n.
Let ξ∗1 , . . . , ξ

∗
n : Q → [0, 1] be the projection functions onto the ith coordinate, i = 1, . . . , n. Then

Ξ∗ = {ξ∗i }ni=1 ⊆ M (Q), because Q ⊆ [0, 1]n. Further, Ξ∗ is a generating set of M (Q). Indeed, the
projection functions ξ1, . . . , ξn : [0, 1]n → [0, 1] form a generating set of the free MV-algebra M ([0, 1]n) by
Lemma 3.1. The restriction map to Q

·∗ : f ∈M ([0, 1]n) 7−→ f∗ ∈M (Q)

is an onto homomorphism of MV-algebras that takes ξi to ξ∗i , by (1 ⇔ 3) in Lemma 3.2. It coincides with
the unique extension of the assignment

ξi 7→ ξ∗i , i = 1, . . . , n ,

whose existence is guaranteed by the universal property of M ([0, 1]n). Since ·∗ : M ([0, 1]n) → M (Q) is
onto, it follows that Ξ∗ generates M (Q).

Now consider the elements

λi = h(ξ∗i ) ∈M (P ) , i = 1, . . . , n , (2)

and define the function

λ(p) = (λ1(p), . . . , λn(p)) , for p ∈ P . (3)

By definition, λ is a Z-map with domain P and range contained in [0, 1]n. Let us first prove that the range
of λ actually is contained Q.

By Lemma 2.5, there is an element θ ∈ M ([0, 1]n) that vanishes precisely on Q, i.e. θ−1(0) = Q.
Therefore, it is sufficient to prove that θ(λ(p)) = 0 for every p ∈ P . Since ξ1, . . . , ξn generate M ([0, 1]n),
there is a term τ(X1, . . . , Xn) in the language of MV-algebras such that

θ = τ(ξ1, . . . , ξn) . (4)

Since the restriction θ∗ = τ(ξ∗1 , . . . , ξ
∗
n) of θ to Q is the element 0 of M (P ), and h is a homomorphim, we

have

h(θ∗) = 0 , (5)
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i.e. h(θ∗) is the function identically zero on P . Because h is a homomorphism, from (4–5) we infer

h(θ∗) = τ(h(ξ∗1), . . . , h(ξ∗n)) = 0 . (6)

Because the operations of M (P ) are defined pointwise, and in light of (2), the evaluation of (6) at every
p ∈ P yields

[τ(h(ξ∗1), . . . , h(ξ∗n))](p) = τ([h(ξ∗1)](p), . . . , [h(ξ∗n)](p))

= τ(λ1(p), . . . , λn(p)) = 0 (7)

Using (3) and (4), the latter equality (7) reads

θ(λ(p)) = 0 ,

as was to be shown.
Having shown that the range of λ is contained in Q, we can regard λ as a Z-map λ : P → Q. It remains to

show that M (λ) = h. It suffices to check that the two homomorphisms M (λ) and h agree at the generating
set Ξ∗ of M (Q). And indeed,

(M (λ))(ξ∗i ) = ξ∗i ◦ λ (by the definition of M ),

= λi (by (3) and the definition of ξ∗i ),

= h(ξ∗i ) (by (2)).

This completes the proof.

3.4. Projective MV-algebras.

Corollary 3.6. For any MV-algebra A, the following are equivalent.

1. A is finitely presented and projective.

2. A is finitely generated and projective.

3. Whenever P ⊆ [0, 1]n, for some integer n > 1, is a rational polyhedron with M (P ) ∼= A, P is a retract
of [0, 1]n by Z-maps.

In particular, the full subcategory of MVfp whose objects are projective MV-algebras is dual to the full
subcategory of PZ whose objects are retracts by Z-maps of finite-dimensional unit cubes.

Proof. (1 ⇒ 2) Trivial.

(2 ⇒ 3) Since A ∼= M (P ) is projective, it is a retract of any free finitely generated object of which it is a
quotient. Since the dual of the inclusion map ι : P ↪→ [0, 1]n is the quotient map r : Fn �M (P ) by Lemma
3.1, it follows that r has a section s : M (P ) ↪→ Fn. Now M (s) : [0, 1]n � P is the desired retraction by a
Z-map.

(3⇒ 1) An exercise in polyhedral geometry shows that a retract of [0, 1]n by Z-maps is a rational polyhedron,
so that A ∼= M (P ) is finitely presented by the duality theorem. To see that M (P ) is projective, let
r : [0, 1]n �M (P ) be a Z-map that is a retraction, and let s : M (P ) ↪→ [0, 1]n be a Z-map that is a section
of r. Again by the duality theorem and Lemma 3.1, M (s) is a retraction of Fn onto M (P ) ∼= A. As
remarked in Subsection 2.2, in any variety retracts of projective objects are projective, and free objects are
trivially projective; hence A is projective.

The last assertion follows at once from the duality theorem using (1 ⇔ 3).

Remark 3.7. Corollary 3.6 is [6, Theorem 1.2].
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We recall next a result on retracts by Z-maps that will be applied in the proof of the Theorem. A
unimodular simplicial complex Σ of dimension 6 1 is strongly regular if any two vertices of Σ that span
a 1-simplex have relatively prime denominators. Like dimension, strong regularity is a property of the
underlying rational polyhedron P = |Σ|, and not of the complex Σ. In other words, suppose P = |∆| = |∇|
for two unimodular simplicial complexes ∆, ∇. Then ∆ has dimension 6 d if and only if ∇ has dimension
6 d, by the classical invariance of dimension; and ∆ is strongly regular if and only if ∇ is, by [7, Lemma
2.5]. Accordingly, we shall speak of strongly regular rational polyhedra having dimension 6 1.

Lemma 3.8. For some integer n > 1, let P be a rational polyhedron in [0, 1]n having dimension 6 1.
Suppose P is simply-connected, strongly regular, and contains a lattice point. Then P is a retract of [0, 1]n

by Z-maps.

Proof. This is proved in [7, Corollary 4.4].

4. The one-variable case.

Theorem 4.1. Let si(X1) and ti(X1) be terms in the language of MV-algebras built from the single variable
X1, for i ranging in some finite index set I. Then, if the unification problem E = {(si(X1), ti(X1)) | i ∈ I}
is unifiable, it admits either one mgu, or two maximally general unifiers that are more general than any
other unifier for E . Further, each one of these cases obtains for some choice of E .

The proof will require three lemmas. By a rational interval (or segment) in [0, 1] we mean a closed interval
[a, b] ⊆ [0, 1] with a, b ∈ Q. We regard singletons {a} with a ∈ [0, 1] ∩ Q as degenerate cases (a = b) of
rational segments.

Lemma 4.2. The retracts of [0, 1] by Z-maps are precisely the rational intervals in [0, 1] that contain a
lattice point.

Proof. Consider an interval [0, q], with q ∈ [0, 1] ∩ Q. The interval [q, 1] is the support of a unimodular
triangulation Σ by Lemma 2.3; let q′ ∈ (q, 1] be the unique vertex of Σ adjacent to q. Let now r : [0, 1]→ [0, 1]
be the piecewise linear function that coincides with the identity over [0, q], with the zero function on [q′, 1],
and that is linear over the interval [q, q′]. A simple computation shows that r is a Z-map because of our
choice of q′. It is clear that r retracts [0, 1] onto [0, q]. Conversely, let r : [0, 1] � Q be any Z-map that
retracts [0, 1] onto Q ⊆ [0, 1]. Then Q is the range of r. Since r is continuous, Q is compact and connected
(because the domain [0, 1] of r is both), hence a closed interval. Since, moreover, r is a Z-map, the maximum
and minimum values it attains are rational – so that Q is a rational interval — and R contains at least
one lattice point — the image under r of 0 and 1, which is necessarily a lattice point by the definition of
Z-map.

Lemma 4.3. Let P be a rational polyhedron in [0, 1]. If 0 ∈ P , there is a unique inclusion-maximal rational
segment in [0, 1] that contains 0 and is contained in P . Similarly, if 1 ∈ P , there is a unique inclusion-
maximal rational segment in [0, 1] that contains 1 and is contained in P .

Proof. By symmetry, we only argue for the case 0 ∈ P . Let Σ be a rational triangulation of P . Then
each simplex of Σ has dimension 6 1. If 0 ∈ P , then 0 must be a vertex of Σ, because it is not a convex
combination of any subset of [0, 1] that omits 0. If 0 is not contained in any 1-simplex of Σ, then 0 is an
isolated point of P , and {0} is then the unique inclusion-maximal (degenerate) rational segment in [0, 1] that
contains 0 and is contained in P . Otherwise, let σ0, . . . , σl be the finite list of 1-simplices of Σ such that (i)
0 ∈ σ0, (ii) σi ∩ σi+1 6= ∅ for i = 0, . . . , l− 1, and (iii) τ ∩ σi = ∅ for each i = 0, . . . , l and for each 1-simplex

τ 6∈ {σi}li=0 of Σ. Such a list necessarily exists because Σ is a finite set. It is then clear that S =
⋃l
i=0 σi is a

rational segment, because each σi has rational vertices, and that S is the unique inclusion-maximal rational
segment in [0, 1] that contains 0 and is contained in P .
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Let P be a rational polyhedron in [0, 1]. The 0-component of P , denoted C0(P ), is defined to be ∅, if
0 6∈ P , and to be the unique inclusion-maximal rational segment of [0, 1] that contains 0 and is contained in
P , otherwise. The existence and uniqueness of the latter segment is guaranteed by Lemma 4.3. Similarly,
the 1-component of P , denoted C1(P ), is defined to be ∅, if 1 6∈ P , and to be the unique inclusion-maximal
rational segment of [0, 1] that contains 1 and is contained in P , otherwise. We say that P has character

B 0, if C0(P ) = C1(P ) = ∅;

B 1, if exactly one of C0(P ) and C1(P ) is non-empty;

B 2, if C0(P ) 6= ∅ 6= C1(P ), and C0(P ) 6= C1(P ); and

B 3, if C0(P ) = C1(P ) = [0, 1].

Lemma 4.4. For any rational polyhedron P in [0, 1], let χ ∈ {0, 1, 2, 3} be the character of P . For some
integer d > 0, let further R ⊆ [0, 1]d be a rational polyhedron that is a retract of [0, 1]n by Z-maps. Then
exactly one of the following cases obtains.

(a) χ = 0. Then there is no Z-map R→ P .

(b) χ = 1. Then every Z-map R → P factors via a Z-map either through the injection C0(P ) ↪→ P , or
through the injection C1(P ) ↪→ P , according as C0(P ) 6= ∅ or C1(P ) 6= ∅.

(c) χ = 2. Then every Z-map R → P factors via a Z-map either through the injection C0(P ) ↪→ P , or
through the injection C1(P ) ↪→ P , but not through both.

(d) χ = 3. Then every Z-map R→ P = [0, 1] factors through the identity map 1[0,1] : [0, 1]→ [0, 1].

Proof. It is clear that each one of the above mutually exclusive cases (a–d) obtains for some choice of P . If
(a) does, then P ∩ {0, 1} = ∅. A trivial computation shows that any Z-map f : R → R′ ⊆ [0, 1]d

′
is such

that, for each p ∈ R ∩ Qd, den f(p) divides den p. In particular, f carries lattice points to lattice points.
Thus, since R is a retract of [0, 1]d by Z-maps, it must contain a lattice point. But then there can be no
Z-map R→ P if P ∩ {0, 1} = ∅, as P contains no lattice point in this case.

As to the other cases, Lemma 4.2 shows that C0(P ) and C1(P ) are retracts of [0, 1] by Z-maps whenever
they are non-empty. Say that in case (b) the 0-component C0(P ) of P is non-empty, whereas C1(P ) = ∅.
Then C0(P ) = [0, q] ⊆ [0, 1] for a unique rational number 0 6 q < 1, by Lemma 4.3. Next suppose
u : R→ P is a Z-map. Since R is a retract of [0, 1]d by Z-maps, it is connected and contains a lattice point.
It follows at once that the range of u is an interval that contains a lattice point. By our assumptions χ = 1
and [0, q] = C0(P ) 6= ∅, the range of u is then contained in C0(P ). Let now g : R → C0(P ) denote the
co-restriction of u : R→ P to C0(P ) ⊆ P . Then obviously u = ιq ◦ g, as was to be shown.

Case (c) is proved by the same argument used for (b). The fact that no Z-map u : R → P can factor
through both injections C0(P ), C1(P ) ↪→ P follows upon noting that we must have C0(P )∩C1(P ) = ∅, and
that therefore (by the connectedness of R) any such u must have range entirely included either in C0(P ) or
in C1(P ). Case (d) is trivial.

End of Proof of Theorem 4.1. Let F1 be the MV-algebra freely generated by the element X1. Let θ be the
congruence relation on F1 generated by the subset of pairs E . Since θ is finitely generated by construction,
A = F1/θ is finitely presented. By Lemma 3.1 together with the duality theorem, the dual of the quotient
map F1 � A is the inclusion map P ↪→ [0, 1], for P a rational polyhedron in [0, 1] such that M (P ) ∼= A.
Let χ ∈ {0, 1, 2, 3} be the character of P , let Ci(P ) be the i-component of P , and let Ui = M (Ci(P )),
i = 0, 1. Each inclusion map ιi : Ci(P ) ↪→ P dualises to a quotient map qi : A� Ui, i = 0, 1. (For the sake
of clarity, let us explicitly observe that if Ci(P ) = ∅ then Ui = M (∅) is the trivial one-element MV-algebra,
the terminal object in the category; it is obviously finitely presentable, e.g. by 1 = 0, but not projective.)
Now let B be any finitely presented projective MV-algebra. By the duality theorem, let R ⊆ Rd′ be a
rational polyhedron such that M (R) ∼= B, for some integer d′ > 0. By Claim 3.5 we may safely assume
that R ⊆ [0, 1]d, for some integer d > 0. Then, by Corollary 3.6, R is a retract of [0, 1]d.
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If now χ = 0, the dual of (a) in Lemma 4.4 states that there is no homomorphism A→ B, so that A is
not algebraically unifiable. If χ = 1, say C0(P ) 6= ∅, so that U0 is projective and q0 : A� U0 is an algebraic
unifier. Then the dual of (b) in Lemma 4.4 states that q0 is the most general algebraic unifier for A. If
χ = 2, both U0 and U1 are projective, so the dual of (c) in Lemma 4.4 states that both q0 and q1 are distinct
maximally general algebraic unifiers for B, and that any other other algebraic unifier for B is below either
q0 or q1. Finally, if χ = 3 so that P = [0, 1], then (d) in Lemma 4.4 states that the identity 1A : A → A is
the most general algebraic unifier for A.

The proof is completed by applying Theorem 2.1 to the preceding analysis by cases according to the
value of χ.

5. Lifts of Z-maps.

Let B be the rational polyhedron consisting of the boundary of the unit square in R2. In symbols, if
v1 = (1, 0), v2 = (1, 1), v3 = (0, 1), v4 = (0, 0), then

B = conv {v1, v2} ∪ conv {v2, v3} ∪ conv {v3, v4} ∪ conv {v4, v1} .

If X,Y ⊆ Rd are arbitrary subsets, for d > 0 an integer, their Minkowski sum is the set

X
.
+ Y = {v ∈ Rd | x+ y = v for some x ∈ X, y ∈ Y } .

When X = {x} is a singleton, we write x
.
+ Y instead of {x}

.
+ Y . In this case, x

.
+ Y is just the translation

of Y by x.

Define the polyhedron t+1 ⊆ R3 as

t+1 = conv {(1, 0, 0), (1, 1, 0)} ∪ conv {(1, 1, 0), (0, 1, 0)} ∪ conv {(0, 1, 0), (0, 0, 0)} ∪ conv { (0, 0, 0), (1, 0, 1)} ,

and the polyhedron t−1 ⊆ R3 as

t−1 = (0, 0,−1)
.
+ t+1 .

Further, for each integer i > 2, set

t+i = t+1 ∪ ( (0, 0, 1)
.
+ t+1 ) ∪ · · · ∪ ( (0, 0, i− 1)

.
+ t+1 ) ,

t−i = t−1 ∪ ( (0, 0,−1)
.
+ t−1 ) ∪ · · · ∪ ( (0, 0,−(i− 1))

.
+ t−1 ) ,

ti = t+i ∪ t−i .

Finally, define

t∞ =
⋃
i>1

ti .

See Figure 1.
For each integer i > 1, we have an inclusion Z-map

ηi : ti ↪→ ti+1 ,

and a further (onto) projection Z-map
ζi : ti � B

given by

(x, y, z) ∈ ti
ζi7−→ (x, y) ∈ B . (8)
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t1

t2

t3

Figure 1: The rational polyhedra ti used in the proof of the Theorem.

We also have a (continuous) projection map

ζ : t∞ � B

defined by the obvious analogue of (8); the restriction of ζ to ti is precisely ζi, for each integer i > 1. We
shall retain the notation above for the remaining part of this paper.

It is clear by construction that ζ is a covering map, so that t∞ is a covering space of B. It is therefore
easy to prove the following lemma by a lifting argument.

Lemma 5.1. Let i, j > 1 be integers. If there is a continuous map f : ti → tj such that ζi = ζj ◦ f , then f
is injective.

Proof. Evidently, both ti and tj are homeomorphic to a compact interval in R, so that both are simply-
connected because every convex subset of Rn is [16, Example 1.4]. By 2 in Lemma 2.6, there is a continuous
map ζ̃j : tj → t∞ such that ζj = ζ ◦ ζ̃j . Moreover, we claim that we can choose ζ̃j as the unique such

lift of ζj that satisfies ζ̃j(f(1, 0, 0)) = (1, 0, 0) ∈ t∞. For this, it suffices to show that (1, 0, 0) ∈ t∞
lies in the fibre over ζj(f(1, 0, 0)). That is, we need to check that ζ(1, 0, 0) = ζj(f(1, 0, 0)), and since
ζ(1, 0, 0) = (1, 0), this amounts to checking that ζj(f(1, 0, 0)) = (1, 0). But since ζi = ζj ◦ f by hypothesis,
we have ζj(f(1, 0, 0)) = ζi(1, 0, 0) = (1, 0), and the claim is settled.

From ζj = ζ ◦ ζ̃j and the hypothesis ζi = ζj ◦ f we obtain

ζi = ζ ◦ ζ̃j ◦ f . (9)

Equation (9) states that ζ̃j ◦ f is a lift of ζi. Now observe that the inclusion map ζ̃i : ti → t∞ also is a lift
of ζi. We further have

ζ̃j(f(1, 0, 0)) = (1, 0, 0) = ζ̃i(1, 0, 0) (10)

because of our choice of ζ̃j . By 1 in Lemma 2.6, from (10) we obtain

ζ̃j ◦ f = ζ̃i . (11)

By (11) the map f factors an injection — namely, ζ̃i — so it must be injective.
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Remark 5.2. In the proof of preceding lemma we used the obvious fact that ζ is a covering map. Now
observe further that t∞ is homeomorphic to the real line R (with its Euclidean topology), and that the
homeomorphism ρ : t∞ → R can be chosen so that each ti ⊆ t∞ is thrown by ρ onto the interval [−i, i] ⊆ R,
for each integer i > 1. Since B is homeomorphic to the unit circle S1, we see that, topologically, ζ is a
distinguished covering map of S1 — it is (a piecewise linear model of) the universal covering map of the
circle. Indeed, in light of our next result it would not be inappropriate to call ζ the universal covering Z-map
of B.

Lemma 5.3 (Lifts of Z-maps). Let ζ : t∞ � B be the covering map of B as in the above. Let P ⊆ Rn be a
rational polyhedron, for some integer n > 0, and let λ : P → B be a Z-map. Then the following hold.

1. Any lift λ̃ : P → t∞ of λ is a Z-map.

2. If P is connected, and λ̃, λ̃′ : P → t∞ are two lifts of λ that agree at one point of P , then λ̃ = λ̃′.

3. If P is simply-connected, then a lift of λ does exist. In fact, for any point p ∈ P , and for any point
t̃ ∈ t∞ lying in the fibre over λ(p), i.e. such that ζ(t̃) = λ(p), there is a lift λ̃ of λ such that λ̃(p) = t̃.

Proof. 1. Let λ̃ : P → t∞ be a lift of λ. Let us display λ̃ and λ in scalar components as

λ̃ = (λ̃1, λ̃2, λ̃3) ,

λ = (λ1, λ2) ,

where each λi : P → R is a Z-map, i = 1, 2, and each λ̃i : P → R is continuous, i = 1, 2, 3. By the hypothesis

ζ ◦ λ̃ = λ

together with the definition of ζ we obtain, for each p ∈ P ,

ζ(λ̃(p)) = ζ(λ̃1(p), λ̃2(p), λ̃3(p)) = (λ̃1(p), λ̃2(p)) = (λ1(p), λ2(p)) ,

so that λ̃1 = λ1 and λ̃2 = λ2. This shows that λ̃1 and λ̃2 are Z-maps. All that remains to be shown is that
λ̃3 is a Z-map, too.

Since P is a polyhedron, it is compact. An easy exercise shows that any continuous image of a compact
space is compact, so that λ̃(P ) is a compact subspace of t∞. By Remark 5.2, the space t∞ is homeomorphic
to the real line with its Euclidean topology via the homeomorphism ρ : t∞ → R; by the Heine-Borel theorem,
ρ(λ̃(P )) is closed and bounded in R. It then follows at once from the fact that ρ is a homeomorphism that
there are two points a = (a1, a2, a3), b = (b1, b2, b3) ∈ t∞ with the property that for every p ∈ P we have
a3 6 λ̃3(p) 6 b3. In fact, it is evidently possible to choose a = (1, 0, z1) and b = (1, 0, z2), for two integers
z1 < z2, in such a way that

z1 < λ̃3(p) < z2 holds for each p ∈ P . (12)

Now set
H = [z1, z2] ∩ Z .

Claim. There exists a finite set of linear Z-maps li : P → R, i ∈ {1, . . . , u}, such that for any point p ∈ P
we have

λ̃3(p) = zp + lip(p) (13)

for some choice of zp ∈ H and ip ∈ {1, . . . , u}.

Proof of Claim. Because λ1 and λ2 are Z-maps, there exists a finite set of linear polynomials with integer
coefficients li : Rn → R, i ∈ {1, . . . , u}, such that, at each p ∈ P , λ1 agrees with some li1 , and λ2 with some
li2 . We have λ(p) = (λ1(p), λ2(p)) ∈ B.
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Case 1. λ2(p) = 0. Then the fibre over λ(p) consists of the set

ζ−1(λ(p)) = {
(
λ1(p), 0, z + λ1(p)

)
∈ R3 | z ∈ Z} .

But λ1 agrees with lip at p, for some ip ∈ {1, . . . , u}; therefore,

ζ−1(λ(p)) = {
(
lip(p), 0, z + lip(p)

)
∈ R3 | z ∈ Z} .

Since λ̃ is a lift of λ, λ̃(p) = (λ1(p), λ2(p), λ̃3(p)) must lie in the fibre over λ(p). Thus,

λ̃3(p) = zp + lip(p) for some zp ∈ Z . (14)

By (12) and (14) we obtain

z1 < zp + lip(p) < z2 . (15)

Since (lip(p), λ2(p)) ∈ B, we have 0 6 lip(p) 6 1, so that (15) implies zp ∈ H, as was to be shown.

Case 2. λ2(p) 6= 0. Then the fibre over λ(p) consists of the set

ζ−1(λ(p)) = {(λ1(p), λ2(p), z ) ∈ R3 | z ∈ Z} .

Since λ̃ is a lift of λ, λ̃(p) = (λ1(p), λ2(p), λ̃3(p)) must lie in the fibre over λ(p). Thus,

λ̃3(p) = zp for some zp ∈ Z . (16)

By (12) and (16) we obtain

z1 < zp < z2 ,

so that zp ∈ H, as was to be shown.

Because the expression on the right-hand side of (13) denotes a linear Z-map, the Claim entails at once
that there is a finite collection of linear polynomials Rn → R with integer coefficients — namely, those of
the form z + l, for z ∈ H and l ∈ {l1, . . . , lu} — such that for each point p ∈ P , λ̃3(p) agrees with one of
them. By Lemma 2.4 this is equivalent to saying that λ̃3 is a Z-map, as was to be shown.

2. By 1 in Lemma 2.6.

3. By 2 in Lemma 2.6.

6. Proof of Theorem.

Lemma 6.1. For each integer i > 1, there is an integer ni > 1 such that ti is Z-homeomorphic to a retract
of [0, 1]ni by Z-maps.

Proof. Let d be the number of lattice points in ti, and let e1, . . . , ed be the standard basis of Rd. Consider
the (fundamental) simplex |∆| = conv {e1, . . . , ed} ⊆ [0, 1]d in Rd, and let ∆ be the unimodular simplicial
complex whose collection of simplices consists of all faces of |∆|. Write eh,k for the 1-simplex in Rd given
by conv {eh, ek}, for h 6= k ∈ {1, . . . , d}. Set

Π = {∅} ∪ {e1, . . . , ed} ∪ {e1,2, e2,3, . . . , ed−1,d} .

Then Π is a unimodular simplicial complex in [0, 1]d. We claim that |Π| is Z-homeomorphic to ti. To see
this, let

z1, . . . , zd
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be the lattice points in ti, listed in the order they are encountered when traversing ti from (1, 0,−i) to
(1, 0, i). Let f : |Π| → ti be the unique continuous map that extends the correspondence

ej 7→ zj , j = 1, . . . , d ,

and is linear over each simplex of |Π|. By construction, f is a homeomorphism. A trivial computation in
linear algebra then shows that both f and f−1 are Z-maps, so that |Π| and ti indeed are Z-homeomorphic.

It remains to show that [0, 1]d retracts onto |Π|. This follows from an application of Lemma 3.8, upon
observing that |Π| evidently is a strongly regular polyhedron of dimension 1.

Lemma 6.2. (i) The following diagram commutes for every integer i > 1.

B

ti

ti+1

ζi

ζi+1

ηi

(ii) For any two integers i > j > 0, there is no Z-map λ : ti → tj making the following diagram commute.

B

ti

tj

ζi

ζj

λ

(iii) For an integer n > 1, suppose P ⊆ [0, 1]n is a rational polyhedron that is a retract of [0, 1]n by Z-maps,
and let λ : P → B be any Z-map. Then there exist an integer i0 > 1 and a Z-map λ′ : P → ti0 such that the
following diagram commutes.

B

ti0

P

ζi0

λ

λ′

Proof. (i) By direct inspection of the definitions.

(ii) Since i > j > 0, ti contains strictly more lattice points than tj by construction. Since Z-maps carry
lattice points to lattice points, any λ as in the statement would fail to be injective. By Lemma 5.1, no such
map can exist.

(iii) Let us first show that P is simply-connected. It is clear that [0, 1]n is connected, and connectedness
is obviously preserved by continuous maps; so P is connected. Now, π1([0, 1]n) is the trivial group {∗},
because [0, 1]n is convex [16, Example 1.4]. Further, let r : [0, 1]n � P be a retraction of [0, 1]n onto P ,
and let s : P ↪→ [0, 1]n be a section of r, so that r ◦ s = 1P . Then by functoriality the pair r, s induces the
following commutative diagram

π1(P ) {∗} π1(P )
π1(s) π1(r)

1π1(P )
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so that π1(P ) is the trivial group, too.
Now 3 in Lemma 5.3 yields the existence of a Z-map λ̃ : P → t∞ satisfying ζ ◦ λ̃ = λ. Since P is compact,

and since a continuous image of a compact set is compact, from the fact that t∞ =
⋃
i>1 ti it immediately

follows that there must exist an integer i0 > 1 such that λ̃(P ) ⊆ ti0 . Let λ′ : P → ti0 be the co-restriction
of λ̃ to ti0 . Then λ′ is a Z-map that satisfies ζi0 ◦ λ′ = λ, as was to be shown.

End of proof of Theorem. Let F2 be the MV-algebra freely generated by the elements X1, X2. Let θ be
the congruence relation on F2 generated by the pair (X1 ∨ ¬X1 ∨ X2 ∨ ¬X2,>). Since θ is principal by
construction, A = F2/θ is finitely presented. The solution set of θ in [0, 1]2 (in the sense of (1⇔ 4) in Lemma
3.2) is B. By Lemmas 3.1 and 3.2 together with the duality theorem, therefore, we see that M (B) ∼= A,
and that the inclusion map B ↪→ [0, 1]2 is dual to the quotient map F2 � A. Set

Ti = M (ti) ,

ui = M (ζi) : A ↪→ Ti ,

for each i > 1. By Lemma 6.1 and Corollary 3.6, each Ti is finitely presented and projective. By the duality
theorem and Lemma 6.2, {ui} is a strictly increasing chain of order-type ω of algebraic unifiers for A that
is co-final in the partially ordered set of algebraic unifiers for A. The proof is completed by an application
of Theorem 2.1.

7. Conclusions and further research.

We have proved that the unification type of MV-algebras is nullary, and that nullary unification problems
already occur over two variables. The unification type of  Lukasiewicz logic was first shown to be non-unitary
by Dzik [11, Corollary 11]. Indeed, our unification problem of nullary type (?) may be regarded as a bivariate
generalisation of the one-variable problem used by Dzik to prove non-unitarity — the tertium non datur
principle X ∨ ¬X = 1.

Unification theory can be applied to the study of admissible rules, see e.g. [15]. Jeřábek [17, 18] provides
an explicit basis for admissible rules in  Lukasiewicz logic, proves that the set of admissible rules is decidable,
and shows that no finite basis exists.

Subvarieties of MV-algebras (=schematic extensions of  Lukasiewicz logic) have been completely classified
by Komori [19]; see also [10, 8.4]. Dzik’s main result [11, Theorem 9] entails as a special case that each
subvariety of MV-algebras generated by a single finite chain (see [10, 8.5.2]) has unitary unification type.
Can one use Komori’s classification to determine the unification type of each subvariety of MV-algebras?

Since MV-algebras are categorically equivalent to lattice-ordered Abelian groups with a strong order
unit [23], the Theorem translates easily to the latter context upon using the category-theoretic notion of
unification type outlined in Remark 2.2 above. (An easy compactness argument shows that lattice-ordered
Abelian groups with a strong order unit are not an elementary class, so that recourse to Remark 2.2 is
unavoidable.) The situation for lattice-ordered Abelian groups (without a distinguished unit) is different.
Beynon proved [4, Theorem 3.1] that the finitely generated projective lattice-ordered Abelian groups are
exactly the finitely presented ones. Hence the unification type of the theory of lattice-ordered Abelian groups
is unitary.

One would like to have a deeper understanding of finitely presented projective MV-algebras and their dual
rational polyhedra; what is known at present — essentially, the results of [7] — shows that the difficulties
involved are not to be taken lightly.

Trivially, it is uniformly decidable whether a unification problem in the language of MV-algebras is
unifiable: one shows first that it suffices to check if some ground substitution that replaces variables by
the constants 0 and 1 unifies the problem; and then that the latter condition is decidable by classical
truth-tables, because the only MV-algebraic structure on {0, 1} is Boolean. By contrast, almost any other
significant decision problem for MV-algebras seems to be open — with the exception of the word problem,
for which see [25]. For example, the isomorphism problem for finitely presented MV-algebras is open. Also,
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it is open whether projectivity of a finite presentation can be algorithmically recognised. Similarly, it is open
whether there is an algorithm to compute the unification type of a unification problem, or even to separate
problems with nullary type from the remaining ones. Much remains to be understood.

In the proof of the Theorem we use the fact that the number of lattice points in the polyhedra ti is
an unbounded function of i, whereas any retract of [0, 1]n by Z-maps has at most 2n lattice points. This
implies that the strictly increasing chain of unifiers that witnesses the nullary type of (?) takes advantage
of a countable infinity of variables. It is natural to ask whether the unification type improves for fragments
of  Lukasiewicz logic restricted to a finite number of variables. Such fragments have a corresponding E-
unification theory, of course. Continuing with the notation adopted in the Introduction, one simply takes
V to be a finite set, and substitutions to be arbitrary maps σ : V → TermV (F ). The terms occurring in
a unification problem E are constrained to come from TermV (F ), too. Unifiers and the unification type
are defined in the obvious fashion. In light of the fact that the duality theorem of Section 3 specialises to
a duality between MV-algebras finitely presented over n generators, and rational polyhedra contained in
[0, 1]n, tools similar to the ones used in this paper can be applied to the investigation of n-variable fragments
of  Lukasiewicz logic. We close with a conjecture.

Conjecture. The unification type of  Lukasiewicz logic restricted to n variables is nullary, for each integer
n > 2.
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