Articles

Work Package 1 (Dualities for prominent varieties of many-valued logics).
  1. S. Celani, R. Jansana , Esakia duality and its extensions.  In: Leo Esakia on Modal and Intuitionistic Logics, edit. by Guram Bezhanishvili. Springer Verlag, Heidelberg (2014)
  2. S. Celani and I. Calomino, Stone style duality for distributive nearlattices, Algebra universalis, 71(2), April (2014),
  3. O. Caramello, V. Marra, L. Spada, General affine adjunctions, Nullstellensätze, and dualities. Preprint available on ArXiv.org 2015.
  4. V. Marra, L. Spada, Two isomorphism criteria for directed colimits. Preprint available on ArXiv.org 2013.
  5. V. Marra, L. Spada, Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic 164 (2013) 192-210.
  6. V. Marra, L. Spada, The dual adjunction between MV-algebras and Tychonoff spaces, Studia Logica 100(1-2) (2012) 253-278.
  7. C. Russo, An extension of Stone Duality to fuzzy topologies and MV-algebras, arXiv:1102.2000v6 [math.LO] submitted to Algebra Universalis.
  8. R. Jansana, U. Rivieccio. Priestley duality for N4-lattices, in Javier Montero and Gabriella Pasi and Davide Ciucci (eds.), Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology, EUSFLAT-13, Milano, Italy, September 11-13, 2013. Pub. Atlantis Press, 2013
  9. R. Jansana, U. Rivieccio. Dualities for modal N4-lattices,  Logic Journal of the  IGPL 222 (2014),  608 – 637.

 

Work Package 2 (Abstract study of translations, interpretations and comparison of logical systems).
  1. I.M.L. D’Ottaviano, H.A. Feitosa, On the existence of a conservative translation from IPL into CPL. Preprint.
  2. I.M.L. D’Ottaviano, H.A. Feitosa, On Gödel’s modal interpretation of the intuitionistic logic, Universal Logic: An Anthology, Birkhäuser, Basel, 71-88
  3. H. Feitosa, Models for the Logic of Tarski Consequence Operator.
  4. C. Russo, An order-theoretic analysis of interpretations among propositional deductive systems, Annals of Pure and Applied Logic 164 (2013), 112-130.
  5. D. Castaño, J. P. Díaz Varela, A. Torrens, Regular elements and Kolmogorov translation in residuated lattices, Algebra Universalis 73 (2015), 1-22.

 

Work Package 3 (Unified logical-algebraic approach to many-valued logics).
  1. P. Cintula, R. Horcík, C. Noguera. The quest for the basic fuzzy logic. Outstanding Contributions to Logic, Vol. 6  Editor: F. Montagna 2015, XII, 245 – 290.
  2. P. Cintula; Zuzana Haniková; R. Horcík; C. Noguera. Non-associative substructural logics: alternative axiomatization, algebraic and logical properties. The Bulletin of Symbolic Logic 19 (2013) 418
  3. P. Cintula; Zuzana Haniková; R. Horcík; C. Noguera. Semilinear non-associative substructural logics: completeness properties and complexity. The Bulletin of Symbolic Logic 19 (2013) 409 – 410.
  4. S. Aguzzoli, A. R. Ferraioli, B. Gerla: A note on minimal axiomatisations of some extensions of MTL, Fuzzy Sets and Systems, DOI: 10.1016/j.fss.2013.09.012, 2013.
  5. M. Busaniche, R: Cignoli, “The subvariety of commutative residuated lattices respresented by twist-products”,  Algebra Universalis 71 (2014), 5-22.
  6. S. Celani, A semantic analysis of some distributive logics with negation, Reports on Mathematical Logic 48 (2013), 79 – 98.
  7.  S. Celani and Ismael Calomino, Some remarks on distributive semilattices, Commentationes Mathematicae Universitatis Carolinae, 54, 3 (2013), 407-428.
  8. P. Cintula, R. Horcík, C. Noguera. Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties, The Review of Symbolic Logic 6 (2013) 794-423.
  9. S. Celani, alpha-ideals in bounded Hilbert algebras, Journal of Multiple-Valued Logic and Soft Computing, Vol. 21, Number 5-6, (2013), pp. 493-510.
  10.  P. Cintula, C. Noguera. The proof by cases property and its variants in structural consequence relations, Studia Logica 101 (2013) 713-747.
  11.  J. Gispert and A. Torrens,  Lattice BCK logics with modus ponens as unique rule. Mathematical logic Quarterly (2014) DOI 10.1002/malq.201300065
  12. G. Metcalfe, F. Montagna and C. Tsinakis, Amalgamation and Interpolation in Ordered Algebras, Journal of Algebra, 402 (2014), 21-82
  13. A. Di Nola, A. R. Ferraioli, B. Gerla. Combining Boolean algebras and l-groups in the variety generated by Chang’s MV-algebra. Mathematica Slovaca, to appear.
  14. S. Aguzzoli, M. Bianchi: On some questions concerning the axiomatisation of WNM-algebras and their subvarieties, Fuzzy Sets and Systems, to appear.
  15. S. Aguzzoli, V. Marra: Two Principles in Many-Valued Logic, In Petr Hájek on Mathematical Fuzzy Logic. F. Montagna, Editor, Outstanding Contributions to Logic 6, (2015) 159-174.
  16. A. Di Nola and C. Russo, Semiring and Semimodule Issues in MV-Algebras, Communications in Algebra 41 (2013), 1017-1048.
  17. A. Di Nola and C. Russo, MV-semirings as a new perspective on mathematical fuzzy set theory: a survey, ArXiv:1102.1999v4 [math.LO] (available at http://arxiv.org/abs/1102.1999v4), submitted to Fuzzy Sets and Systems.
  18. F. Esteva, L. Godo, E. Marchioni. Fuzzy Logics with Enriched Language Handbook of Mathematical Fuzzy Logic – volume 2. Studies in Logic, Mathematical Logic and Foundations, no. 38, London, College Publications, pp. 627 – 711, 2011.
  19. F. Esteva; L. Godo. Some remarks about standard first order tautologies. In Proc. of ManyVal’12, Salerno, Italia,
  20. S. Aguzzoli, M. Bianchi, D. Valota: A note on drastic product logic. Communications in Computer and Information Science, 443 (2014) 365-374.
  21.  M. Sagastume, H. J. San Martín. The logic  Ł˙. Mathematical Logic Quartyerly, vol 60(6) (2014), 375-388.
  22. P. Cintula, C. Noguera. A general framework for Mathematical Fuzzy Logic, Handbook of Mathematical Fuzzy Logic – volume 1, chapter II, P. Cintula, P. Hájek, C. Noguera (eds), Studies in Logic, Mathematical Logic and Foundations, vol. 37, College Publications, London, 2011, pp. 103 – 207.
  23. P. Cintula, C. Noguera. On the role of disjunction in the theory of consequence relations. 27th International Symposium Logica 2013 – abstracts, pp. 22 – 24, 2013.
  24. P. Cintula, C. Noguera. A note on natural extensions in abstract algebraic logic, to appear in Studia Logica.
  25. P. Cintula, C. Noguera. Implicational (Semilinear) Logics II: additional connectives and characterizations of semilinearity, submitted to Archive for Mathematical Logic.

 

Work Package 4 (Representation theorems for free algebras in the semantics of many-valued logics).
  1. S. Celani, R. Jansana, On the free implicative meet-semilattice  extension of a Hilbert algebra,  Mathematical Logic Quarterly 58 (2012) pp. 188-207.
  2. M. Busaniche, L. Cabrer, D. Mundici, Confluence and combinatorics in finitely generated unital lattice-ordered abelian groups, Forum Math. 24 (2012), 253–271
  3. L.Cabrer, D.Mundici, Rational polyhedra and projective lattice-ordered abelian groups with order unit, Communications in Contemporary Mathematics, 14. 3  (2012) 1250017 (20 pages)
  4. D. Mundici, Logic on the n-cube, honoring Arnon Avron, JLC/IGPL journal.  To appear.
  5. M.Busaniche, D.Mundici, Bouligand-Severi tangents in MV-algebras, Revista Mat. Iberoamericana.  30.1 (2014) 191–201.
  6. D.Mundici, Universal properties of Lukasiewicz consequence, Logica Universalis,  8.1 (2014) 17-24.
  7. M. Busaniche, L.M. Cabrer,  D.Mundici, Polyhedral MV-algebras, Fuzzy Sets and Systems (2014).
  8. S. Aguzzoli, Leonardo Cabrer, Vincenzo Marra, MV-algebras freely generated by finite Kleene algebras, Algebra Universalis, 70 (2013) 245-270.
  9. S. Aguzzoli, Simone Bova, Brunella Gerla. Free Algebras and Functional Representation for Fuzzy Logics. Chapter IX of Handbook of Mathematical Fuzzy Logic – Volume 2. P. Cintula, P. Hájek, C. Noguera Eds., Studies in Logic, vol. 38, College Publications, London (2011) 713-791.

 

Work Package 5 (Combining logics: formal tools for providing unifying settings).
  1. Agudelo, J C. and  Carnielli, W. A. Polynomial ring calculus for modal logics: a new semantics and proof method for modalities. The Review of Symbolic Logic, v. 4, p. 150-170, 2011.
  2. W. A. Carnielli,  The Single-minded Pursuit of Consistency and its Weakness. Studia Logica, v. 97, p. 81-100, 2011.
  3. W. A. Carnielli and M. E. Coniglio. On discourses addressed by infidel logicians. In: K. Tanaka; F. Berto; E. Mares; F. Paoli (Eds.). Paraconsistency: Logic and Applications, p. 27 – 41.  Springer, 2013.
  4. J. L. Castiglioni, R. C. Ertola, Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation Logic Journal of the IGPL, published online August 11, 2013. doi:10.1093/jigpal/jzt027
  5. X. Caicedo, G. Metcalfe, R. Rodriguez, and J. Rogger, Decidability of Order-Based Modal Logics. Submitted to the special issue of JCSS for WoLLIC 2013.
  6. M.E. Coniglio; M. Figallo. Hilbert-style Presentations of Two Logics Associated to Tetravalent Modal Algebras. Studia Logica 102 (2014), 525 – 539.
  7. M.E. Coniglio, Martin Figallo. On a four-valued modal logic with deductive implication. Bulletin of the Section of Logic 43 (2014),  1 – 18.
  8. M.E. Coniglio; F. Esteva; L. Godo. Logics of formal inconsistency arising from systems of fuzzy logic. Logic Journal of the  IGPL 22 (2014), 880 – 904.
  9. R. Ertola; F. Esteva; Tommaso Flaminio; L. Godo; C. Noguera. Exploring Paraconsistency in Degree-Preserving Fuzzy Logics 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), G. Passi, J. Montero and D. Ciucci (eds.) , Milano, Italy, Atlantis Press, pp. 117-124.
  10. R. Ertola, F. Esteva, T. Flaminio, L. Godo, C. Noguera, Paraconsistency properties in degree-preserving fuzzy logics. Soft Computing 19(3): 531–546, 2015
  11. M.E. Coniglio and L.H. da Cruz Silvestrini. An alternative approach for Quasi-Truth. Logic Journal of the IGPL 22, n. 2: 387-410, 2014. First published online: August 6, 2013. DOI: 10.1093/ljigpal/jzt026
  12. R. Rodriguez; L. Godo. Modal uncertainty logics with fuzzy neighbourhood semantics. IJCAI-13 Workshop on Weighted Logics for Artificial Intelligence (WL4AI-2013), L. Godo, H. Prade and G. Qi (eds.) , pp. 79-86, 04/08/2013.
  13. F. Montagna, J. Amidei, R. Ertola Biraben: Conservative extensions of Many-Valued and Substructural Logics. Submitted
  14. M.E. Coniglio; M. Figallo. A Formal Framework for Hypersequent Calculi and Their Fibring. In: A. Koslow; A. Buchsbaum (Eds.), The Road to Universal Logic, p. 73 – 93. Springer, 2015.
  15. M.E. Coniglio; T.G. Rodrígues. Some investigations on mbC and mCi. In: C.A. Mortari. (Ed.), Tópicos de lógicas não clássicas, p. 11 – 70. NEL/UFSC, 2014.
  16. W.A. Carnielli; M.E. Coniglio. Swap Structures for LFIs. CLE e-Prints 14(2014), 1 – 39.
  17. M.M. Ribeiro; M.E. Coniglio. Contracting Logics. In: L. Ong; R. de Queiroz (Eds.), Logic, Language, Information and Computation, p. 268-281.  LNCS vol.  7456, Springer, 2012.
  18. M. Coniglio, F. Esteva, L. Godo, On Logics of Formal Inconsistency and Fuzzy Logics. In Proc. of Many-val 2013, Prague September 4-6, 2013, pp. 20-22.
  19. S. Celani and D. Montangie,  Hilbert algebras with a modal operator Diamond, to appear in Studia Logica.
  20. R. Ertola, F. Esteva, T. Flaminio, L. Godo, C. Noguera. Paraconsistent degree-preserving fuzzy logic, Handbook of 5th World Congress on Paraconsistency, Jean-Yves Béziau, Arthur Buchsbaum, Alvaro Altair (eds), Indian Statistical Institute, Calcutta, India, pp. 47 – 48

 

Work Package 6 (Generalised Probability Theory for imprecise events).
  1. D. Mundici, Rational measure of rational simplexes, dedicated to Walter A. Carnielli on his 60th birthday. Logic without Frontiers:Festschrift for Walter Alexandre Carnielli on the occasion of his 60th Birthday. Jean-Yves Béziau and Marcelo Esteban Coniglio (eds.) Volume 17 of Tribute Series, College Publications. London, 2011. ISBN 978-1-84890-055-4
  2. M. Fedel, K. Keimel , F. Montagna, F.  Roth, Imprecise probabilities, bets and functional analytic methods in Lukasiewicz logic. FORUM MATHEMATICUM, vol. 25, p. 405-441, 2013, ISSN: 1435-5337.
  3. T. Flaminio, L. Godo, H. Hosni, Coherence in the aggregate: a betting method for belief functions on many-valued events. International Journal of Approximate Reasoning 58: 71–86, 2015.
  4. T. Flaminio, T. Kroupa, States of MV-algebras, chapter accepted to Handbook of Mathematical Fuzzy Logic – volume 3.

 

Work Package 7 (Beliefs and many-valued logic: a uniform approach through modalities).
  1. F .Bou, F. Esteva, L. Godo,R. Rodriguez. A complete calculus for possibilistic Gödel Logic
  2. M. El-Zekey; L. Godo. An extension of Godel logic for reasoning under both vagueness and possibilistic uncertainty IPMU 2012. IPMU 2012, Part II, CCIS 298, Catania, Italy, Springer-Verlag Berlin Heildelberg, pp. 216–225, 09/07/2012.
  3. S. Aguzzoli, D. Ciucci, V. Marra (Ed.s). Rough Sets and Logic. International Journal of Approximate Reasoning, 55,  2014.
  4. T. Flaminio, L. Godo, E. Marchioni, Logics for belief functions on MV- algebras, International Journal of Approximate Reasoning, 54(4): 491–512, 2013.
  5. F. Esteva; L. Godo; C. Noguera. A logical approach to fuzzy truth hedges, Information Sciences, vol. 232, pp. 366-385, 2013.
  6. T. Flaminio, L. Godo, T. Kroupa. Belief functions on MV-algebras of fuzzy sets: an overview. Non-Additive Measures: Theory and Applications, p. 173-200, Eds: Torra Vicenc, Narukawa Yasuo, Sugeno Michio, Springer 2013
  7. F. Bou, F. Esteva and L. Godo, On Possibilistic Modal Logics Defined Over MTL-Chains, In Petr Hájek on Mathematical Fuzzy Logic (edited by F. Montagna) (2015), 225-244.
  8. M. Blondeel, T. Flaminio, S. Schockaert, L. Godo, M. De Cock, Relating fuzzy autoepistemic logic to fuzzy modal logics of belief. Fuzzy Sets and Systems, 276, 74-99 2015.
  9. F. Esteva; L. Godo; R. O. Rodriguez; T. Vetterlein. Logics for approximate and strong entailment. Fuzzy Sets and Systems, vol. 197: Elsevier, pp. 59-70, 06/2012.
  10. P. Cintula, C. Noguera. Two-layer modal logics: from fuzzy logics to a general framework, Proceedings of 6th Topology, Algebra and Categories in Logic, N. Galatos, A. Kurz and C. Tsinakis (eds), EPiC Series, vol. 123, pp. 43 – 47, Vanderbilt University, Nashville, Tennessee, USA, 2013.
  11. P. Cintula, C. Noguera. Modal logics of uncertainty with two layer-syntax: a general completeness theorem. Logic, Language, Information and Computation – 21st International Workshop, WoLLIC 2014, Ulrich Kohlenbach, Pablo Barceló, Ruy de Queiroz (eds), Valparaiso, Chile, September 1-4, 2014, Lecture Notes in Computer Science, Springer, pp. 124 – 136

 

Work Package 8 (Formal algebraic systems for reasoning about probabilities of non-classical events).
  1. D. Diaconescu, T. Flaminio, I. Leuştean, Lexicographic MV-algebras and lexicographic states. Fuzzy Sets and Systems, 244: 63–85, 2014
  2. D. Diaconescu, A. R. Ferraioli, T. Flaminio, B. Gerla. Exploring infinitesimal events through MV-algebras and non-Archimedean states. In proceedings of IPMU 2014, A. Laurent et al. (Eds.), Part II, CCIS 443, pp. 385–394, 2014. 
  3. T. Flaminio, L. Godo, H. Hosni, On the logical structure of de Finetti’s notion of event. Journal of Applied Logic, 12: 279–301, 2014.
  4. T. Flaminio, L. Godo, A note on the convex structure of uncertainty measures on MV-algebras. In Advances in Intelligent and Soft Computing 190 (Springer), R. Kruse et al. (Eds.): Synergies of Soft Computing and Statistics for Intelligence Data Analysis, pp. 73–82, 2013.
  5. T. Flaminio, L. Godo, H. Hosni. Zero-Probability and Coherent Betting: A Logical Point of View. In Proceedings of Ecsqaru 2013, L.C. van der Gaag (Ed.), LNAI 7958, pp. 206–217, 2013.1
  6. F. Montagna, M. Fedel, G. Scianna. Non-standard probability, coherence and conditional probability on many-valued events. International Journal Of Approximate Reasoning, vol. 54, p. 573-589, 2013, ISSN: 0888-613X
  7. F. Montagna, Partially Undetermined Many-Valued Events and Their Conditional Probability, Journal of Philosophical Logic, 41, (2014), 563-593.
  8. D. Mundici, Invariant measure under the affine group over Z; Combinatorics, Probability and Computing, 23 (2014) 248–268.

 

Work Package 9 (First Order many-valued logics).
  1. W. Carnielli; M.E. Coniglio; R. Podiacki and Tarcísio Rodrígues. On the Way to a Wider Model Theory: Completeness Theorems for First-Order Logics of Formal Inconsistency. Review of Symbolic Logic 7(2014), 548-578.
  2. W.A. Carnielli,  M.E. Coniglio. Paraconsistent set theory by predicating on consistency. Journal of Logic and Computation. First published online: July 9, 2013. 
  3. P. Cintula, C. Noguera. A Henkin-style proof of completeness for first-order algebraizable logics, The Journal of Symbolic Logic 80 (2015), 341 – 358.
  4. T. Flaminio, M. Bianchi, A note on saturated models for many-valued logics, Mathematica Slovaca. In print, 2015.
  5. D. Mundici, A compact [0,1]-valued first-order Lukasiewicz  logic with identity on Hilbert space, J. Logic and Computation, 21(3)  (2009)  509-525.
  6. A. Vidal; F. Bou. Image-finite first-order structures ManyVal 2013, Abstracts Volume, T. Kroupa (eds.), Prague, Czech Republic, pp. 52-53.
  7. C. Cimadamore, J. P. Díaz Varela, Monadic MV-algebras I: a study of subvarieties, Algebra Universalis 71 (2014), no. 1, 71-100.
  8. C. Cimadamore, J. P. Díaz Varela, Monadic MV-algebras II: monadic implicational subreducts, Algebra Universalis 71 (2014), no. 3, 201-219.
  9. P. Hájek, F. Montagna, C. Noguera. Arithmetical complexity of first-order fuzzy logics, Handbook of Mathematical Fuzzy Logic – volume 2, chapter XI, P. Cintula, P. Hájek, C. Noguera (eds), Studies in Logic, Mathematical Logic and Foundations, vol. 38, College Publications, London, 2011, pp. 853 – 908.
  10. P. Dellunde, À. García-Cerdaña, C. Noguera. Advances on elementary equivalence in model theory of fuzzy logics, Logic Colloquium and Logic, Algebra and Truth Degrees: Abstract Booklet, Matthias Baaz, Agata Ciabattoni, Stefan Hetzl (eds), Kurt Gödel Society, Vienna, Austria, July 2014.
  11. P. Dellunde, À. García-Cerdaña, C. Noguera. Löwenheim-Skolem theorems for non-classical first-order algebraizable logics, submitted to Logic Journal of the IGPL.

 

Books

  1. P. Cintula; Petr Hájek; C. Noguera. Handbook of Mathematical Fuzzy Logic – volume 1 Studies in Logic, Mathematical Logic and Foundations, P. Cintula, Petr Hájek, C. Noguera (eds.) , no. 37, London, College Publications, pp. 486, 2011.
  2. P. Cintula; Petr Hájek; C. Noguera. Handbook of Mathematical Fuzzy Logic – volume 2 Studies in Logic, Mathematical Logic and Foundations, P. Cintula, Petr Hájek, C. Noguera (eds.) , no. 38, London, College Publications, pp. 474, 2011.
  3. D. Mundici, Advanced Lukasiewicz calculus and MV-algebras, Trends in Logic, Vol. 35  Springer, New York, (2011).

Seminars

  1. P. Codara, Euler Characteristic in Gödel and Nilpotent Minimum Logics, Universidade Federal da Bahia, March 21, 2013
  2. P. Codara, On Valuations in Gödel and Nilpotent Minimum Logics; 4th World Congress and School on Universal Logic; Rio de Janeiro, April 2013
  3. H. Feitosa, O operador de consequência da Tarski e a lógica modal do fecho dedutivo, Meeting: XV Encontro Nacional da ANPOF, 2012..
  4. D. Mundici,  Rota-Metropolis cubic logic, Philosophy and Mathematics of Uncertainty and Vagueness, Campinas, Sao Paulo, August 2012
  5. D. Mundici,   The Logic of rational Polyhedra, Buenos Aires.
  6. D. Mundici,  Recent results on MV-algebras, Santa Fe.
  7. P. D. Varela, Monadic MV-algebras and monadic l-groups. University of Barcelona.
  8. D. Castaño, Algebraic funtions and algebraically expandable classes of Lukasiewicz implication algebras, University of Barcelona.
  9. S. Aguzzoli, Duality Semantics for Many-valued Logics. CONICET, Argentina.
  10. J. Bueno-Soler, Paraconsistent Modal Logics. University of Siena.
  11. J. Bueno-Soler, On Realistic Epistemic Logic. University of Salerno.
  12. J. Bueno-Soler, On incomplete and limited knowledge: an epistemic logic for realist agents. University of Firenze.
  13. J. Bueno-Soler, David Lewis’s trivialization on conditional probability and paraconsistency. University of Siena.
  14. W. Carnielli, Polynomials  over  finite field as a universal  proof  method. University of Siena.
  15. W. Carnielli, Set theory with consistency and inconsistency predicates. University of Salerno.
  16. W. Carnielli, Paraconsistent Description Logics: how Description Logics can be more intelligent, University of Firenze.
  17. W. Carnielli, Paraconsistent set theories by predicating on (in)consistency. University of Siena:
  18. D. Castaño, Projective Lukasiewicz implication algebras, IIIA Barcelona.
  19. R. Ertola, Adding connectives to intuitionistic logic. University of Salerno.
  20. T. Kroupa, A Generalized Möbius Transform on MV-algebras. Universidade Federal da Bahia. March 2013.
  21. T. Kroupa, Games and probabilities in Lukasiewicz logic. CONICET, Argentina. March 2014
  22. V. Marra, L. Spada Extended seminar talk (6 hours). Nullstellensatz, Dualities and Adjunctions.  University of Buenos Aires.
  23. H. San Martin, “Some categorical equivalences motivated by Kalman’s work on Kleene algebras, and the logic Ł”. University of Milano.  September 2013
  24. F. Bou, Thinking on the monadic fragment of first-order Lukasiewicz logic. University of Bahía Blanca, Aug 2011
  25. F. Bou, Thinking on the monadic fragment of first-order Lukasiewicz logic. University of Buenos Aires, Aug 2011
  26. S. G. da Silva, (a)-spaces and selectively (a)-spaces from almost disjoint families. Universitat de Barcelona, January 2015
  27. S. G. da Silva,  On the extent of separable, locally compact, selectively (a)-spaces. Universitat de Barcelona, January 2015.   
  28. S. G. da Silva,  Categorial forms of the Axiom of Choice. Universitat de Barcelona, February 2015.
  29. M.E. Coniglio, On the relationship between tetravalent modal algebras, symmetric Boolean algebras and modal algebras for S5.  Faculty of Mathematics, University of Barcelona (UB),  Spain, January 24, 2013
  30. M.E. Coniglio, Paraconsistent Logics or How to Tolerate Contradictions. IIIA, Barcelona, Spain,  January 29, 2013.
  31. M.E. Coniglio, F-structures and swap structures for Logics of Formal Inconsistency. Faculty of Mathematics, University of Barcelona (UB), Spain, July 2, 2014.
  32. M. Passos, A little survey of elementary submodels, University of Milan, October 2014.
  33. M. Menni, A general category of Being and particular categories of Becoming (in the representation theory of MV-algebras), University of Milan, July 2013.
  34. F. Esteva, T. Flaminio, L. Godo. Fuzzy Logic and Paraconsistency, November 2012, CLE, University of Campinas
  35. F. Esteva, L. Godo, Adding consistency operators to fuzzy logics, November 2014, CLE, University of Campinas
  36. S. Celani, Midly distributive semilattices, University of Barcelona, September 2014
  37. S. Celani, Distributive nearlattices, University of Barcelona, September 2012
  38. R. Jansana. On Esakia style duality for implicative meet semilattices. Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil (Argentina). Novemebr 2001.
  39. R. Jansana. Dualities for modal N4-lattices. Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil (Argentina). February 2015.
  40. D. Castaño, Regular elements and boolean elements in residuated lattices, 3rd MaToMUVI Meeting, Buenos Aires, February 2015.
  41. An introduction to Mathematical Fuzzy Logic (Institute of Applied Mathematics of Litoral IMAL – CONICET, Santa Fe, Argentina, 29 July 2011).
  42. Fuzzy logics with hedges (Department of Computer Science, University of Buenos Aires, Argentina, 11 August 2011).
  43. Deduction theorems and disjunctions in substructural logics (Department of Mathematics, National University of the South, Bahía Blanca, Argentina, 16 August 2011).
  44. An introduction to Mathematical Fuzzy Logic (National University of Central Buenos Aires, Tandil, Argentina, 19 September 2011).
  45. Mathematical Fuzzy Logic: origins and development (Logic Colloquium Seminar of the Centre for Logic, Epistemology and the History of Science, University of Campinas, Brazil, 23 May 2012).
  46. An introductory course to Abstract Algebraic Logic (National University of Central Buenos Aires, Tandil, Argentina, February – March 2015).
  47. R. Ertola, Adding univocal connectives. University of Barcelona, June 2014.
  48. R. Ertola, Connectives and schemas. 16 SLALM. Buenos Aires, July 2014.