Teoria delle categorie (Corso di dottorato 2021/22)

Introduzione

La teoria delle categorie è un linguaggio moderno, molto diverso da quello della teoria degli insiemi, in cui può essere formalizzata la matematica.  Mentre il linguaggio degli insiemi ha come concetto fondamentale quello di appartenenza, il linguaggio della teoria delle categorie è incentrato sul concetto di trasformazione. Questo piccolo cambiamento iniziale ha ripercussioni enormi sulle intuizioni che guidano i ragionamenti matematici.  Spesso, riformulare un problema in termini categoriali offre una prospettiva completamente diversa su di esso e aiuta a distinguere la parte “generale” di un problema dal quella più specifica.
Una buona parte della matematica contemporanea è espressa esclusivamente nel linguaggio della teoria delle categorie. Inoltre la teoria delle categorie si presta anche allo studio della fisica dove, ad esempio, le fusion categories e le categorie di moduli emergono nello studio degli stati topologici della materia nella fisica dello stato solido (si veda ad esempio qui o questo articolo).

Argomenti del corso

  • Categorie, proprietà universali, funtori.
  • Trasformazioni naturali, funtori aggiunti ed equivalenze categoriali.
  • Dualità concrete.
  • Lemma di Yoneda.
  • Sheaf e topos.
  • Monadi.

Argomenti delle lezioni

  • 24/02/2022 – Introduzione al corso, definizione di categoria, frecce mono, epi e iso
  • 25/02/2022 – Oggetti terminali e iniziali. Equalizzatori e co-equalizzatori. Prodotti e co-coprodotti. Esempi.
  • 03/03/2022 – Pullback e pushout. Categorie comma. Funtori.
  • 04/03/2022 – Trasformazioni naturali. Il lemma di Yoneda. L’immersione di Yoneda.
  • 10/03/2022 – Aggiunzioni.
  • 11/03/2022 – Ancora su aggiunzioni e loro esempi.
  • 17/03/2022 – Le dualità di Stone, Gel’fand e Pontryagin.
  • 18/03/2022 – Dualità concrete e aggiunzioni affini.

Materiale del corso

  • Harold Simmons. An introduction to category theory. Cambridge University Press, 2011. (Disponibile gratuitamente qui)
  • Robert Goldblatt Topoi: The Categorial Analysis of Logic, Dover Publications 2006. (Disponibile gratuitamente qui)
  • Saunders Mac Lane. Categories for the Working Mathematician (Seconda edizione). Springer. 1988. (Disponibile gratuitamente qui)

Aspetti pratici

Docente: Luca Spada
Durata del corso: 20 ore.

Esame

È possibile scegliere di sostenere l’esame finale in uno dei seguenti modi:

  • Un breve colloquio orale (circa 30 minuti) in cui saranno valutate le conoscenze acquisite in merito ai concetti di base e a quelli più avanzati della teoria delle categorie.
  • L’esposizione di un argomento concordato con il docente e non trattato nel corso, nella forma di un breve seminario aperto anche agli altri dottorandi della durata di circa 45 minuti.
  • La risoluzione a casa di alcuni esercizi.

Orario

  • Giovedì 9:30 – 12:30 – Sala riunioni DipMat
  • Venerdì 9:30 – 11:30 – Sala riunioni DipMat

Corso di Logica Matematica (2021/22)

News

(9/5/2022) Pubblicate le date degli appelli estivi e di quello autunnale.

(9/5/2022) All’inizio di giugno partirà un corso help teaching di supporto alla preparazione dell’esame. Maggiori notizie a breve.

Descrizione del corso

È richiesta familiarità con gli argomenti di base di algebra e teoria degli insiemi.

Frequenza

La frequenza non è obbligatoria ma è fortemente consigliata.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Sintassi della logica proposizionale.
  • Deduzione naturale per la logica proposizionale.
  • Semantica della logica proposizionale.
  • Algebre di Boole.
  • Teorema di completezza della logica proposizionale.
  • Sintassi della logica del prim’ordine.
  • Semantica della logica del prim’ordine.
  • Teorema di completezza per la logica del prim’ordine.
  • Ultraprodotti.
  • Limiti dei linguaggi del prim’ordine.
  • Teorema di compattezza per la logica del prim’ordine.

Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni:

  1. 22/09/2021 – Introduzione al corso. Formule ben formate.
  2. 24/09/2021 – Valutazioni, tautologie, conseguenza logica.
  3. 29/09/2021 – Completezza funzionale, forme normali congiuntive e disgiuntive, insiemi massimalmente finitamente soddisfacibili.
  4. 01/10/2021 – Il teorema di compattezza.
  5. 06/10/2021 – La deduzione naturale. Adeguatezza del sistema.
  6. 08/10/2021 – Coerenza e soddisfacibilità. La completezza della logica proposizionale.
  7. 13/10/2021 – Introduzione ai reticoli e le algebre di Boole.
  8. 15/10/2021 – Prime proprietà delle algebre di Boole e primo teorema di isomorfismo.
  9. 20/10/2021 – Relazioni tra epimorfismi, congruenze e filtri.
  10. 22/10/2021 – Ideali, filtri principali e ultrafiltri.
  11. 27/10/2021 – Teorema di rappresentazione di Stone
  12. 29/10/2021 – Algebre di Boole liberamente generate e algebre di Lindenbaum-Tarski
  13. 03/11/2021 – Verso il teorema di completezza algebrica.
  14. 05/11/2021 – Il teorema di completezza algebrica.
  15. 10/11/2021 – La logica del prim’ordine: sintassi.
  16. 12/11/2021 – La logica del prim’ordine: semantica.
  17. 17/11/2021 – Formule del prim’ordine logicamente valide. Forma normale premessa. La deduzione naturale per la logica del prim’ordine.
  18. 19/11/2021 – Teorema di adeguatezza.
  19. 24/11/2021 – Teorie Henkin, estensioni conservative, il teorema di esistenza del modello.
  20. 26/11/2021 – Il teorema di completezza della logica del prim’ordine e la compattezza come suo corollario.
  21. 01/12/2021 – Ultraprodotti, teorema di Los.
  22. 03/12/2021 – Teorema di Compattezza con l’uso degli ultraprodotti. I teoremi di Lowenheim-Skolem.
  23. 10/12/2021 – Applicazioni.

Materiale del corso

  • Testi consigliati:
    • Dirk van Dalen. Logic and Structure. Springer 1994.
    • Elliott Mendelson. Introduzione alla logica matematica. Bollati Boringhieri 1977.
    • J. L. Bell, A. B. Slomson. Models and Ultraproducts: An Introduction. Dover 2006.
  • Dispense: Ultima versione.
    • Attenzione: le dispense potrebbero subire degli aggiornamenti minori.  Tutte le versioni saranno disponibili su questo sito per fare confronti.  Una lista dei cambiamenti principali sarà inclusa nel testo.
    • Per segnalare errori per piacere inviare un’email a Luca Spada.

Aspetti pratici

Crediti/ore:

  • Durata: 56 ore (11 settimane).
  • CFU: 7

Date/aule:

  • Le lezioni cominceranno mercoledì 22 settembre in modalità mista.
  • Ci sono due lezioni a settimana:
    • mercoledì dalle 11:15 alle 13:45, aula F6+Teams.
    • venerdì dalle 11:15 alle 13:00, aula F6+Teams.

Esercizi/Esami

Tutorato:

Esame:

  • L’esame per questo corso è solo orale. Per sostenere l’esame contattare il docente.

L’esame orale verte su tutti gli argomenti trattati durante il corso.  Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso e di averli compresi, mostrando di sapere costruire esempi in maniera indipendente.  In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi).  Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).

Appelli d’esame:

  • Appelli invernali:
    1. 10 gennaio 2022 ore 9:00 aula P5 (in presenza)
    2. 31 gennaio 2022 ore 9:00 aula P5 (in presenza)
  • Appelli estivi:
    1. 8 giugno 2022 ore 9:00 aula P11.
    2. 30 giugno 2022 ore 9:00 aula P11.
  • Appello autunnale:
    1. 1 settembre 2022 ore 9:00 aula P11.

Per gli esami a distanza prendere un appuntamento via email con il docente con circa una settimana di anticipo.

Commenti, lamentele, domande: scrivere a Luca Spada

Corso di Fondamenti della Matematica (2021/22)

News

(9/5/22) Pubblicate le date d’appello per la sessione estiva e quella autunnale (alla fine di questa pagina).

Descrizione del corso

La matematica vista nei primi anni di studi universitari include la geometria, l’algebra, l’analisi, la combinatoria, la probabilità. Nello studiare queste branche della matematica alcune domande sorgono quasi spontanee: cos’è in generale la matematica? Cosa è un sistema formale? È possibile costruire una teoria matematica che contenga tutte le altre? E se sì, quali sono i suoi assiomi? Quali sono le uniche cose che dobbiamo assumere vere affinché tutto il resto della matematica ne sia una conseguenza?

Queste domande ne fanno scaturire immediatamente altre. Se tutta la matematica può essere vista come un’unica grandissima teoria. Fin dove arriva questa? Quali sono i suoi limiti? È possibile dimostrare tutto ciò che è vero?

Nel corso degli anni in matematica sono state sviluppare tecniche sempre più sofisticate, ragionamenti sempre più complessi e costruzioni sempre più ardite. Da ciò sono nati risultati inaspettati, a volte così tanto da sembrare falsi. Come si può essere sicuri che alla fine i teoremi dimostrati finora non portino a contraddizione? Esistono delle fondamenta sicure per la matematica? Su cosa fonda la matematica?

Ad esempio, tutti gli studenti di matematica sanno che esistono vari livelli di infinito e che a volte le proprietà di questi infiniti sono contro intuitive. Come si può fare a sapere che questa idea di infinito è quella corretta? Come si può essere sicuri che i ragionamenti portati avanti in teorie matematiche che coinvolgono infinità di numeri, infinità di funzioni, infinità di spazi, alla fine siano corretti?

Molte di queste domande sono state oggetto di approfondita ricerca da parte di un grande matematico del 900: David Hilbert. Egli si chiese se tutto il processo della scoperta di nuove teorie e nuovi teoremi potesse in qualche modo essere meccanizzato. Queste domande portarono Hilbert a cambiare l’idea stessa della matematica per trasformarla in quello che studiamo oggi. Ma, mentre il più grande matematico del 900 mette in piedi questo enorme programma di ricerca, un giovane viennese di 24 anni, con la sua tesi di dottorato, distrugge completamente il programma dando risposta a molte delle domande viste prima. È sorprendente pensare che le risposte a queste domande possano essere teoremi matematici, piuttosto che speculazioni filosofiche.

In questo corso analizzeremo queste domande, le formalizzeremo e vedremo quali risposte sono state proposte.

Frequenza

La frequenza non è obbligatoria ma è fortemente consigliata.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Il metodo assiomatico.
  • Esempi di metodi assiomatici.
  • Coerenza, Completezza, Categoricità e Indipendenza.
  • Il Programma di Hilbert.
  • Cenni sui teoremi di Gödel.
  • La Teoria di Zermelo-Fraenkel.
  • Assioma della scelta e alcune sue conseguenze importanti.
  • Ordinali e Cardinali.
  • Indipendenza di alcuni assiomi da ZF.

Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni.

  1. 23/09/2021 – Introduzione al corso. Un mini esempio di sistema assiomatico: le flogghe che scoprono.
  2. 24/09/2021 – Geometria in miniatura, un secondo esempio di sistema assiomatico e sue possibili interpretazioni.
  3. 29/09/2021 – Alcuni teoremi nel sistema “geometria in miniatura”. Indipendenza degli assiomi.
  4. 30/09/2021 – Modelli, interpretazioni, soddisfacibilità e coerenza.
  5. 06/10/2021 – Completezza e categoricità.
  6. 07/10/2021 – La crisi delle matematica del 900.
  7. 13/10/2021 – Il V postulato di Euclide e le geometrie non euclidee.
  8. 14/10/2021 – Il programma di Hilbert: decidibilità
  9. 20/10/2021 – Il programma di Hilbert: completezza
  10. 21/10/2021 – I primi assiomi della teoria ZFC.
  11. 27/10/2021 – Funzioni. Assioma dell’infinito e assiomi di rimpiazzamento.
  12. 28/10/2021 – Assioma di regolarità e assioma della scelta. Insiemi ben ordinati.
  13. 03/11/2021 – Il teorema di tricotomia
  14. 04/11/2021 – Non ci sarà lezione.
  15. 10/11/2021 – Gli ordinali.
  16. 11/11/2021 – Induzione e ricorsione transfinita.
  17. 17/11/2021 – Operazioni sugli ordinali.
  18. 18/11/2021 – Formulazioni equivalenti dell’assioma della scelta.
  19. 24/11/2021 – Cardinali.
  20. 25/11/2021 – La biezione canonica tra On x On e On.
  21. 01/12/2021 – Somma e prodotto di cardinali. L’ipotesi del continuo. L’universo dei costruibili.
  22. 02/12/2021 – Introduzione al linguaggio della teoria delle categorie.
  23. 09/12/2021 – Mono, epi, iso, coni e co-coni.
  24. 15/12/2021 – Funtori e trasformazioni naturali
  25. 16/12/2021 – Categorie per i fondamenti della matematica.

Materiale del corso

  • Testi consigliati:
    • M. Borga, D. Palladino, Oltre il mito della crisi: fondamenti e filosofia della matematica del XX secolo. Editrice La Scuola.
    • G. Lolli, Tavoli, sedie e boccali di birra: David Hilbert e la matematica del Novecento. Raffaello Cortina Editore.
    • S. Leonesi, C. Toffalori. Matematica, Miracoli e Paradossi. Storie di Cardinali da Cantor a Gödel (2007) Mondadori.
    • G. Gerla, Dagli Insiemi alla Logica Matematica. Tentativi di Fondare la Matematica, Volume I e II. Ilmiolibro.it.

Aspetti pratici

Crediti/ore:

  • Durata: 48 ore (12 settimane).
  • CFU: 6

Date/aule:

  • Le lezioni cominceranno giovedì 23 settembre su Microsoft Teams.
  • Ci sono due lezioni a settimana:
    • mercoledì dalle 16:15 alle 17:45, online su Teams.
    • giovedì dalle 14:15 alle 15:45, online su Teams.

Esercizi/Esami

Esame:

  • L’esame per questo corso è solo orale. 

Appelli d’esame:

  • Appelli invernali:
    1. 14 gennaio 2022 ore 9:00 aula F3 (in presenza)
    2. 11 febbraio 2022 ore 9:00 aula F3 (in presenza)
  • Appelli estivi:
    1. 8 giugno 2022 ore 15:00 aula P11.
    2. 30 giugno 2022 ore 15:00 aula P11.
  • Appello autunnale:
    1. 1 settembre 2022 ore 15:00 aula P11.

Per gli esami a distanza prendere un appuntamento via email con il docente circa una settimana prima.

Teoria delle categorie (Corso di dottorato 2020/21)

Introduzione

La teoria delle categorie è un linguaggio moderno, molto diverso da quello della teoria degli insiemi, in cui può essere formalizzata la matematica.  Mentre il linguaggio degli insiemi ha come concetto fondamentale quello di appartenenza, il linguaggio della teoria delle categorie è incentrato sul concetto di trasformazione. Questo piccolo cambiamento iniziale ha ripercussioni enormi sulle intuizioni che guidano i ragionamenti matematici.  Spesso, riformulare un problema in termini categoriali offre una prospettiva completamente diversa su di esso e aiuta a distinguere la parte “generale” di un problema dal quella più specifica.
Una buona parte della matematica contemporanea è espressa esclusivamente nel linguaggio della teoria delle categorie. Inoltre la teoria delle categorie si presta anche allo studio della fisica dove, ad esempio, le fusion categories e le categorie di moduli emergono nello studio degli stati topologici della materia nella fisica dello stato solido (si veda ad esempio qui o questo articolo)

Argomenti del corso

  • Categorie, proprietà universali, funtori.
  • Trasformazioni naturali, funtori aggiunti ed equivalenze categoriali.
  • Dualità concrete.
  • Lemma di Yoneda.
  • Sheaf e topos. Monadi.

Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni 

  • 26/04 – Introduzione, definizione di Categoria ed esempi.
  • 30/04 – Frecce moniche e epiche, oggetti iniziali e finali, prodotti e coprodotti.
  • 03/05 – Esempi di prodotti e co-prodotti. Equalizzatori e co-equalizzatori.
  • 07/05 – Pullback e Pushout. Categorie opposte. Funtori.
  • 10/05 – Trasformazioni naturali e lemma di Yoneda.
  • 14/05 –
  • 17/05 – Immersione di Yoneda. Funtori aggiunti.
  • 21/05 – Definizioni equivalenti di funtori aggiunti.
  • 24/05 – Ancora sui funtori aggiunti.
  • 28/05 – Monadi. La categoria di Kleisli di una monade.
  • 31/05 – La categoria di Eilenberg-Moore di una monade. Relazioni tra monadi e aggiunzioni.

Materiale del corso

  • Harold Simmons. An introduction to category theory. Cambridge University Press, 2011. (Disponibile gratuitamente qui)
  • Robert Goldblatt Topoi: The Categorial Analysis of Logic, Dover Publications 2006. (Disponibile gratuitamente qui)
  • Saunders Mac Lane. Categories for the Working Mathematician (Seconda edizione). Springer. 1988. (Disponibile gratuitamente qui)

Aspetti pratici

Docente: Luca Spada
Durata del corso: 20 ore.

Esame

È possibile scegliere di sostenere l’esame finale in uno dei seguenti modi:

  • Un breve colloquio orale (circa 30 minuti) in cui saranno valutate le conoscenze acquisite in merito ai concetti di base e a quelli più avanzati della teoria delle categorie.
  • L’esposizione di un argomento concordato con il docente e non trattato nel corso, nella forma di un breve seminario aperto anche agli altri dottorandi della durata di circa 45 minuti.
  • La risoluzione a casa di alcuni esercizi.

Orario

Lunedì 9:30 – 11:30
Venerdì 11:00 – 13:00

Corso di Matematiche Complementari II (2020/21)

News

Descrizione del corso

Il corso sarà tenuto dai prof. G. Vincenzi e L. Spada. L’obiettivo è fornire conoscenza degli aspetti fondazionali della matematica nel loro sviluppo storico.

Frequenza

La frequenza non è obbligatoria ma è fortemente consigliata.

Contenuti

La parte del corso riguardante i fondamenti coprirà i seguenti argomenti:

  • Il metodo assiomatico.
  • Esempi di metodi assiomatici.
  • Coerenza, Completezza, Categoricità e Indipendenza.
  • La Teoria di Zermelo-Fraenkel.
  • Ordinali e Cardinali.
  • Assioma della scelta e alcune sue conseguenze importanti.
  • Il Programma di Hilbert.
  • Cenni sui teoremi di Gödel.

Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni tenute da Luca Spada.

  1. 03/03/2021 – Introduzione al corso. Il sistema assiomatico.
  2. 10/03/2021 – Esempi di sistemi assiomatici e loro interpretazioni.
  3. 17/03/2021 – Un altro esempio: le flogghe che scorpano. Proprietà dei sistemi formali: coerenza e soddisfacibilità.
  4. 24/03/2021 – Indipendenza e completezza dei sistemi formali.
  5. 31/03/2021 – Lo sviluppo dei fondamenti tra il XVIII e XX secolo.
  6. 07/04/2021 – I primi assiomi di ZF.
  7. 14/04/2021 – Gli altri assiomi di ZF e loro prime conseguenze.
  8. 21/04/2021 – La costruzione di N, Z, Q e R all’interno di ZF. L’assioma di regolarità e l’assioma della scelta.
  9. 28/04/2021 – Insiemi transitivi, buoni ordini e Ordinali.
  10. 05/05/2021 – Proprietà degli insiemi ben ordinati e degli ordinali.
  11. 12/05/2021 – Il teorema di tricotomia. Operazioni sugli ordinali.
  12. 19/05/2021 – I cardinali. Conclusioni.

Materiale del corso

  • Testi consigliati:
    • M. Borga, D. Palladino, Oltre il mito della crisi: fondamenti e filosofia della matematica del XX secolo. Editrice La Scuola.
    • G. Lolli, Tavoli, sedie e boccali di birra: David Hilbert e la matematica del Novecento. Raffaello Cortina Editore.
    • S. Leonesi, C. Toffalori. Matematica, Miracoli e Paradossi. Storie di Cardinali da Cantor a Gödel (2007) Mondadori.
    • G. Gerla, Dagli Insiemi alla Logica Matematica. Tentativi di Fondare la Matematica, Volume I e II. Ilmiolibro.it.

Aspetti pratici

Crediti/ore:

  • Durata: 48 ore (12 settimane).
  • CFU: 6

Date/aule:

  • Le lezioni cominceranno lunedì 1 marzo su Microsoft Teams.
  • Ci sono due lezioni a settimana:
    • lunedì dalle 16:00 alle 18:00 (Vincenzi), online su Teams.
    • mercoledì dalle 15:00 alle 17:00 (Spada), online su Teams.

Esercizi/Esami

Esame:

  • L’esame per questo corso è solo orale. 

Appelli d’esame:

  • Appelli estivi: 10 giugno 2021 e 13 luglio 2021 (Il primo a distanza il secondo sia in presenza che a distanza).
  • Appello autunnale: 6 settembre 2021 (sia in presenza che a distanza).
  • Un ulteriore appello nel periodo tra l’8 novembre e il 10 dicembre 2021.

« Previous PageNext Page »