Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras
We prove that the unification type of Lukasiewicz infinite-valued propositional logic and of its equivalent algebraic semantics, the variety of MV-algebras,is nullary. The proof rests upon Ghilardi’s algebraic characterisation of unification types in terms of projective objects, recent progress by Cabrer and Mundici in the investigation of projective MV-algebras, the categorical duality between finitely presented MV-algebras and rational polyhedra, and, finally, a homotopy-theoretic argument that exploits lifts of continuous maps to the universal covering space of the circle. We discuss the background to such diverse tools. In particular, we offer a detailed proof of the duality theorem for finitely presented MV-algebras and rational polyhedra – a fundamental result that, albeit known to specialists, seems to appear in print here for the first time.
Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras
Tags: Covering space, Fundamental group, Lifts, Łukasiewicz logic, Projective MV-algebra, rational polyhedra, Retractions, Unification, Universal cover
[…] is the most updated version of a talk presenting the result contained here. The talk was given in plenary session at Topology, Algebra, and Category in Logic -TACL- V, […]