MV-algebras, infinite dimensional polyhedra, and natural dualities
Leo and I have just finished our paper on the connection between natural dualities and the duality between semisimple MV-algebras and compact Hausdorff spaces with definable maps. Actually, we provide a description of definable maps that is intrinsically geometric. In addition, we give some applications to semisimple tensor products, strongly semisimple and polyhedral MV-algebras.
The paper can be downloaded here.
Geometrical dualities for Łukasiewicz logic
This is the transcript of a featured talk given on the 15th of September 2011 at the XIX Congeresso dell’Unione Matematica Italiana held in Bologna, Italy. It is based on a joint work with Vincenzo Marra of the University of Milan that was published in Vincenzo Marra and Luca Spada. The dual adjunction between MV-algebras and Tychonoff spaces, Studia Logica 100(1-2):253-278, 2012. Special issue of Studia Logica in memoriam Leo Esakia (L. Beklemishev, G. Bezhanishvili, D. Mundici and Y. Venema Editors).
The article develops a general dual adjunction between MV-algebras (the algebraic equivalents of Łukasiewicz logic) and subspaces of Tychonoff cubes, endowed with the transformations that are definable in the language of MV-algebras. Such a dual adjunction restricts to a duality between semisimple MV-algebras and closed subspaces of Tychonoff cubes. Further the duality theorem for finitely presented objects is obtained from the general adjunction by a further specialisation. The treatment is aimed at emphasising the generality of the framework considered here in the prototypical case of MV-algebras.
Geometrical dualities for Łukasiewicz logic
The dual adjunction between MV-algebras and Tychonoff spaces
We offer a proof of the duality theorem for finitely presented MV-algebras and rational polyhedra, a folklore and yet fundamental result. Our approach develops first a general dual adjunction between MV-algebras and subspaces of Tychonoff cubes, endowed with the transformations that are definable in the language of MV-algebras. We then show that this dual adjunction restricts to aduality between semisimple MV-algebras and closed subspaces of Tychonoff cubes. The duality theorem for finitely presented objects is obtained by a further specialisation. Our treatment is aimed at showing exactly which parts of the basic theory of MV-algebras are needed in order to establish these results, with an eye towards future generalisations.
The dual adjunction between MV-algebras and Tychonoff spaces