Corso di Matematiche Complementari II (2020/21)

News

Descrizione del corso

Il corso sarà tenuto dai prof. G. Vincenzi e L. Spada. L’obiettivo è fornire conoscenza degli aspetti fondazionali della matematica nel loro sviluppo storico.

Frequenza

La frequenza non è obbligatoria ma è fortemente consigliata.

Contenuti

La parte del corso riguardante i fondamenti coprirà i seguenti argomenti:

  • Il metodo assiomatico.
  • Esempi di metodi assiomatici.
  • Coerenza, Completezza, Categoricità e Indipendenza.
  • La Teoria di Zermelo-Fraenkel.
  • Ordinali e Cardinali.
  • Assioma della scelta e alcune sue conseguenze importanti.
  • Il Programma di Hilbert.
  • Cenni sui teoremi di Gödel.

Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni tenute da Luca Spada.

  1. 03/03/2021 – Introduzione al corso. Il sistema assiomatico.
  2. 10/03/2021 – Esempi di sistemi assiomatici e loro interpretazioni.
  3. 17/03/2021 – Un altro esempio: le flogghe che scorpano. Proprietà dei sistemi formali: coerenza e soddisfacibilità.
  4. 24/03/2021 – Indipendenza e completezza dei sistemi formali.
  5. 31/03/2021 – Lo sviluppo dei fondamenti tra il XVIII e XX secolo.
  6. 07/04/2021 – I primi assiomi di ZF.
  7. 14/04/2021 – Gli altri assiomi di ZF e loro prime conseguenze.
  8. 21/04/2021 – La costruzione di N, Z, Q e R all’interno di ZF. L’assioma di regolarità e l’assioma della scelta.
  9. 28/04/2021 – Insiemi transitivi, buoni ordini e Ordinali.
  10. 05/05/2021 – Proprietà degli insiemi ben ordinati e degli ordinali.
  11. 12/05/2021 – Il teorema di tricotomia. Operazioni sugli ordinali.
  12. 19/05/2021 – I cardinali. Conclusioni.

Materiale del corso

  • Testi consigliati:
    • M. Borga, D. Palladino, Oltre il mito della crisi: fondamenti e filosofia della matematica del XX secolo. Editrice La Scuola.
    • G. Lolli, Tavoli, sedie e boccali di birra: David Hilbert e la matematica del Novecento. Raffaello Cortina Editore.
    • S. Leonesi, C. Toffalori. Matematica, Miracoli e Paradossi. Storie di Cardinali da Cantor a Gödel (2007) Mondadori.
    • G. Gerla, Dagli Insiemi alla Logica Matematica. Tentativi di Fondare la Matematica, Volume I e II. Ilmiolibro.it.

Aspetti pratici

Crediti/ore:

  • Durata: 48 ore (12 settimane).
  • CFU: 6

Date/aule:

  • Le lezioni cominceranno lunedì 1 marzo su Microsoft Teams.
  • Ci sono due lezioni a settimana:
    • lunedì dalle 16:00 alle 18:00 (Vincenzi), online su Teams.
    • mercoledì dalle 15:00 alle 17:00 (Spada), online su Teams.

Esercizi/Esami

Esame:

  • L’esame per questo corso è solo orale. 

Appelli d’esame:

  • Appelli estivi: 10 giugno 2021 e 13 luglio 2021 (Il primo a distanza il secondo sia in presenza che a distanza).
  • Appello autunnale: 6 settembre 2021 (sia in presenza che a distanza).
  • Un ulteriore appello nel periodo tra l’8 novembre e il 10 dicembre 2021.

The Twelfth International Tbilisi Symposium on Language, Logic and Computation

The Twelfth International Tbilisi Symposium on Language, Logic and Computation will be held on 18-22 September 2017 in Kakheti, Georgia. The Programme Committee invites submissions for contributions on all aspects of language, logic and computation: https://easychair.org/conferences/?conf=tbillc2017. Submission deadline: 15 March 2017.

Tutorials:

Language: Jakub Szymanik (University of Amsterdam)
Logic: Sam van Gool (City College of New York)
Computation: Ana Sokolova (University of Salzburg)

Invited speakers:

Language:
Gemma Boleda (Universitat Pompeu Fabra)
Ruth Kempson (King’s College, London)
Logic:
Alexander Kurz (University of Leicester)
Eric Pacuit (University of Maryland)
Computation:
Dexter Kozen (Cornell University)
Alex Simpson (University of Ljubljana)

Further information at http://events.illc.uva.nl/Tbilisi/Tbilisi2017/