Representation of MV-algebras by regular ultrapowers of [0,1]

We present a uniform version of Di Nola Theorem, this enables to embed all MV-algebras of a bounded cardinality in an algebra of functions with values in a single non-standard ultrapower of the real interval [0,1]. This result also implies the existence, for any cardinal \alpha, of a single MV-algebra in which all infinite MV-algebras of cardinality at most $\alpha$ embed.  Recasting the above construction with iterated ultrapowers, we show how to construct such an algebra of values in a definable way, thus providing a sort of  “canonical” set of values for the functional representation.

Representation of MV-algebras by regular ultrapowers of [0,1]

A discrete representation of free MV-algebras

We prove that the $n$-generated free MV-algebra is isomorphic to a quotient of the disjoint union of all the $n$-generated free MV$^{(n)}$-algebras. Such a quotient can be seen as the direct limit of a system consisting of all free MV${}^{(n)}$-algebras and special maps between them as morphisms.

A discrete representation of free MV-algebras

muMV-algebras: an approach to fixed points in Lukasiewicz logic

We study an expansion of MV-algebras, called $\mu$MV-algebras, in which minimum and maximum fixed points are definable. The first result is that $\mu$MV-algebras are term-wise equivalent to divisible MV$_\Delta$ algebras, i.e. a combination of two known MV-algebras expansion: divisible MV-algebras and MV$_\Delta$ algebras. Using methods from the two known extensions we derive a number of results about $\mu$MV-algebras; among others: subdirect representation, standard completeness, amalgamation property and a description of the free algebra.

muMV-algebras: an approach to fixed points in Lukasiewicz logic

Continuous approximations of MV-algebras with product and product residuation: a category-theoretic equivalence

A new class of $MV$-algebras with product, called L$\Pi_q$-algebras, has been introduced. In these algebras, the discontinuous product residuation $\to_\pi$  is replaced by a continuous approximation of it. These algebras seem to be a good compromise between the need ofexpressiveness and the need of continuity of connectives.  Following a good tradition in many-valued logic, in this paper we introduce a class of commutative $f$-rings with strong unit and with a sort of weak divisibility property, called $f$-quasifields, and we show that the categories of L$\Pi_q$-algebras and of $f$-quasifields are equivalent.

Continuous approximations of MV-algebras with product and product residuation: a category-theoretic equivalence

« Previous Page