Corso di Logica Matematica (2022/23)

News

Descrizione del corso

È richiesta familiarità con gli argomenti di base di algebra e teoria degli insiemi.

Frequenza

La frequenza non è obbligatoria ma è fortemente consigliata.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Sintassi della logica proposizionale.
  • Deduzione naturale per la logica proposizionale.
  • Semantica della logica proposizionale.
  • Algebre di Boole.
  • Teorema di completezza della logica proposizionale.
  • Sintassi della logica del prim’ordine.
  • Semantica della logica del prim’ordine.
  • Teorema di completezza per la logica del prim’ordine.
  • Ultraprodotti.
  • Limiti dei linguaggi del prim’ordine.
  • Teorema di compattezza per la logica del prim’ordine.

Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni:

  1. 26/09/2022 – Introduzione al corso. Il ragionamento logico e le sue regole.
  2. 28/09/2022 – Il linguaggio della logica proposizionale. Tavole di verità.
  3. 03/10/2022 – Conseguenza logica, insiemi soddisfacibili e loro prime proprietà.
  4. 05/10/2022 – Il teorema di compattezza della logica preposizionale e una sua applicazione.
  5. 10/10/2022 – Introduzione alla deduzione naturale.
  6. 12/10/2022 – Derivabilità e insiemi coerenti di formule.
  7. 17/10/2022 – Completezza della logica proposizionale.
  8. 19/10/2022 – Introduzione alle algebre di Boole: ordini parziali e reticolari.
  9. 24/10/2022 – Omomorfismi e sottalgebre.
  10. 26/10/2022 – Filtri e ultrafiltri.
  11. 31/10/2022 – Non ci sarà lezione.
  12. 02/11/2022 – Il teorema di rappresentazione di Stone.
  13. 07/11/2022 – Sintassi della logica del prim’ordine.
  14. 09/11/2022 – Semantica della logica del prim’ordine.
  15. 14/11/2022 – Conseguenza logica, forme normali prenesse, regole di deduzione per i quantificato.
  16. 16/11/2022 – Il teorema di adeguatezza.
  17. 21/11/2022 – Il lemma di esistenza del modello e il teorema di completezza.
  18. 23/11/2022 – Il teorema di Löwenheim-Skolem all’ingiù.
  19. 28/11/2022 – Il teorema di Löwenheim-Skolem all’insù e sue conseguenze.
  20. 30/11/2022 – Ultraprodotti e Teorema di Łoš. Dimostrazione diretta del Teorema di Compattezza.
  21. 05/12/2022 – Algebre di Boole liberamente generate.
  22. 07/12/2022 – Algebre di Lindenbaum-Tarski.
  23. 12/12/2022 – Il teorema di completezza algebrica.
  24. 14/12/2022Tutorato.
  25. 19/12/2022 – (un’ora) Altre applicazioni degli ultrafiltri.

Materiale del corso

  • Testi consigliati:
    • Dirk van Dalen. Logic and Structure. Springer 1994.
    • Elliott Mendelson. Introduzione alla logica matematica. Bollati Boringhieri 1977.
    • J. L. Bell, A. B. Slomson. Models and Ultraproducts: An Introduction. Dover 2006.
  • Dispense: Dispense-6.4
    • Attenzione: le dispense potrebbero subire degli aggiornamenti minori.  Tutte le versioni saranno disponibili su questo sito per fare confronti.  Una lista dei cambiamenti principali sarà inclusa nel testo.
    • Per segnalare errori per piacere inviare un’email a Luca Spada.

Aspetti pratici

Crediti/ore:

  • Durata: 56 ore (11 settimane).
  • CFU: 7

Date/aule:

  • Le lezioni cominceranno lunedì 26 settembre.
  • Ci sono due lezioni a settimana:
    • lunedì dalle 11:15 alle 13:45, aula P1.
    • mercoledì dalle 09:15 alle 10:45, aula P1.

Esercizi/Esami

Esame:

  • L’esame per questo corso è solo orale. È possibile sostenere l’esame in qualsiasi momento contattando il docente circa una settimana prima.

L’esame orale verte su tutti gli argomenti trattati durante il corso.  Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso e di averli compresi, mostrando di sapere costruire esempi in maniera indipendente.  In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi).  Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).

Appelli d’esame

  • 9 gennaio 2023 ore 9:00 aula F6 edificio F2.
  • 15 febbraio 2023 ore 9:00 aula F6 edificio F2.

Commenti, lamentele, domande: scrivere a Luca Spada

Tags: , , ,

Leave a Reply


Warning: Undefined variable $user_ID in /Library/WebServer/Documents/lucaspada/wp-content/themes/open-sourcerer/comments.php on line 65

Captcha * Time limit is exhausted. Please reload the CAPTCHA.