Corso di Logica Matematica (2020/21)

News

Descrizione del corso

È richiesta familiarità con gli argomenti di base di algebra e teoria degli insiemi.

Frequenza

La frequenza non è obbligatoria ma è fortemente consigliata.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Sintassi della logica proposizionale.
  • Deduzione naturale per la logica proposizionale.
  • Semantica della logica proposizionale.
  • Algebre di Boole.
  • Teorema di completezza della logica proposizionale.
  • Sintassi della logica del prim’ordine.
  • Semantica della logica del prim’ordine.
  • Teoremi di completezza e compattezza per la logica del prim’ordine.
  • Limiti dei linguaggi del prim’ordine.

Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni:

  1. 25/09/2020 – Introduzione al corso.
  2. 28/09/2020 – Il linguaggio formale. Conseguenza logica, tautologie e soddisfacibilità.
  3. 02/10/2020 – Completezza funzionale, forma normale disgiuntiva e congiuntiva.
  4. 05/10/2020 – Teorema di compattezza per la logica proposizionale.
  5. 09/10/2020 – Un’applicazione del Teorema di compattezza alla teoria dei grafi. La deduzione naturale.
  6. 12/10/2020 – Esempi di deduzioni naturali.
  7. 16/10/2020 – Teorie massimalmente coerenti e loro proprietà. Teorema di completezza per la logica proposizionale.
  8. 19/10/2020 – Ordini parziali, ordini reticolari e reticoli.
  9. 23/10/2020 – Algebre di Boole e prime proprietà.
  10. 26/10/2020 – Omomorfismi, congruenze e sottalgebre.
  11. 30/10/2020 – Kernel e filtri. Corrispondenza tra filtri, congruenze e epimorfismi.
  12. 02/11/2020 – Filtri generati da un insieme, FIP. Ultrafiltri e loro prime proprietà.
  13. 06/11/2020 – Esistenza degli ultrafiltri. Teorema di Stone. Algebre di Boole liberamente generate.
  14. 09/11/2020 Termini booleani. Proprietà delle algebre libere.
  15. 13/11/2020 Teorema di completezza algebrica.
  16. 16/11/2020 – Sintassi della logica del prim’ordine. Sostituzioni.
  17. 20/11/2020 – Semantica della logica del prim’ordine.
  18. 23/11/2020 – Validità e equivalenza logica. Esempi di formule logicamente valide.
  19. 27/11/2020 – Forma normale prenessa. La deduzione naturale per la logica del prim’ordine. Adeguatezza della deduzione naturale.
  20. 30/11/2020 – Estensioni conservative e teorie Henkin.
  21. 04/12/2020 – Teorema di completezza. Teorema di compattezza. Teoremi di Lowenheim-Skolem.
  22. 07/12/2020 – Ultraprodotti e teorema di compattezza.
  23. 11/12/2020 – Il teorema di compattezza tramite gli ultraprodotti. Conclusioni

Materiale del corso

  • Testi consigliati:
    • Elliott Mendelson. Introduzione alla logica matematica. Bollati Boringhieri 1977.
    • Dirk van Dalen. Logic and Structure. Springer 1994.
    • J. L. Bell, A. B. Slomson. Models and Ultraproducts: An Introduction. Dover 2006.
  • Dipsense: Ultima versione.
    • Attenzione: le dispense sono in corso di aggiornamento.  Tutte le versioni saranno disponibili su questo sito per fare confronti.  Una lista dei cambiamenti principali sarà inclusa nel testo.
    • Per segnalare errori per piacere inviare un’email a Luca Spada.

Aspetti pratici

Crediti/ore:

  • Durata: 56 ore (11 settimane).
  • CFU: 7

Date/aule:

  • Le lezioni cominceranno venerdì 25 settembre su Microsoft Teams, appena possibile si terranno anche in presenza in modalità mista.
  • Ci sono due lezioni a settimana:
    • lunedì dalle 11:15 alle 13:00, aula F3 online su Teams.
    • venerdì dalle 9:00 alle 11:30, aula F6 online su Teams.

Esercizi/Esami

Tutorato:

Il tutorato si svolge nello stesso Team del corso. Questo è il piano degli incontri:

  • 27 novembre, ore 15:00
  • 4 dicembre, ore 15:00
  • 11 dicembre, ore 9:00
  • 14 dicembre, ore 10:30
  • 18 dicembre, ore 9:00
  • 21 dicembre, ore 11:15
  • Gli appuntamenti di gennaio sono da definire.

Esame:

  • L’esame per questo corso è solo orale. Per sostenere l’esame contattare il docente.

L’esame orale verte su tutti gli argomenti trattati durante il corso.  Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso e di averli compresi, mostrando di sapere costruire esempi in maniera indipendente.  In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi).  Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).

Appelli d’esame:

  • Appelli invernali: 7 gennaio 2021 e 8 gennaio 2021 (entrambi a distanza).
  • Appello straordinario primaverile: tra il 7 aprile 2021 e il 30 aprile 2021 (entrambi a distanza).
  • Appelli estivi: 9 giugno 2021 e 12 luglio 2021 (Il primo a distanza il secondo sia in presenza che a distanza).
  • Appello autunnale: 3 settembre 2021 (sia in presenza che a distanza).
  • Un ulteriore appello nel periodo tra l’8 novembre e il 10 dicembre 2021.

Commenti, lamentele, domande: scrivere a Luca Spada

Are locally finite MV-algebras a variety?

Here you can find the slides of my talk Are locally finite MV-algebras a variety? presented at the Shanks Workshop on Ordered Algebras and Logic at Vanderbilt University (Nashville, US) and on Zoom for the Algebra|Coalgebra seminar of the ILLC (Amsterdam).

The material is based on a joint work with M. Abbadini (University of Salerno).

Unification in Lukasiewicz logic with a finite number of variables

In this paper, coauthored with Marco Abbadini and Federica Di Stefano, we prove that the unification type of Lukasiewicz logic with a finite number of variables is either infinitary or nullary.  To achieve this result we use Ghilardi’s categorical characterisation of unification types in terms of projective objects,  the categorical duality between finitely presented MV-algebras and rational polyhedra, and a homotopy-theoretic argument.

Logiche polivalenti: alcuni temi di ricerca sviluppati in Italia

In questo articolo presentiamo alcuni temi di ricerca in logica a più valori. Anche se essi sono attuali e di grande interesse teorico, di certo essi non esauriscono le linee di ricerca nel settore delle logiche a più valori, neppure se ci restringiamo al panorama nazionale. Per questo, a beneficio dei giovani logici che volessero iniziare un percorso di ricerca nel campo delle logiche polivalenti, faremo anche una breve panoramica delle linee di ricerca e delle competenze dei gruppi di ricerca italiani che si occupano di logica polivalente.

An introduction to Topos Theory (Phd course 2018/19)

This year I will teach an introduttive course on Topos Theory.

Topos theory has many different aspects. On the one hand, a topos is a generalisation of a topological space. On the other hand, every topos can be thought of as a mathematical universe in which one can do mathematics. In fact, there is a duality between Grothendieck topoi and certain first-order theories of logic, called geometric theories. Topos theory grew out of the observation that the category of sheaves over a fixed topological space forms a universe of “continuously variable sets” which obeys the laws of intuitionistic logic. After recalling some basic notions in Category Theory such as functors, natural transformations, limits and adjunctions, we will examine categories of presheaves and their fundamental properties, Grothendieck sites and sheaves and the notion of elementary topos. Applications to logic will be treated.

The (tentative) course calendar is as follows:

  • Tuesday, 7 May 2019, 15:00 (Aula P18, DipMat). Introduction to the course. Categories, functors, natural transformations, adjoint functors and equivalences. A motivation for considering sheaves: dualities.
  • Wednesday, 8 May 2019, 15:30 (Sala Riunioni, DipMat). The category of C\mathcal{C}-sets and six examples. Representable C\mathcal{C}-sets and their computation in the examples.
  • Tuesday, 14 May 2019, 15:00 (Sala Riunioni, DipMat). Products, coproducts and other limits and colimits in the category of C\mathcal{C}-sets, with their calculation in the six examples. Yoneda lemma and Yoneda embedding.
  • Wednesday, 15 May 2019, 15:30 (Sala Riunioni, DipMat). Every C\mathcal{C}-set is a colimit of representable C-sets. Intrinsic properties of representable objects: connectivity, irreducibility and continuity. Sections, retractions and idempotents.
  • Tuesday, 21 May 2019, 15:30 (Sala Riunioni, DipMat). The equivalence between the Cauchy completion of C\mathcal{C} and the full subcategory of continuous objects in SetsCopSets^{\mathcal{C}^{op}}.
  • Wednesday, 22 May 2019, 16:00 (Sala Riunioni, DipMat) Exponentials and Subobject classifiers, with examples.
  • Tuesday, 28 May 2019, 15:00 (Sala Riunioni, DipMat) There will not be lectures this week.
  • Wednesday, 29 May 2019, 15:30 (Sala Riunioni, DipMat) There will not be lectures this week.
  • Tuesday, 4 June 2019, 15:00 (Sala Riunioni, DipMat) Frames and point-free geometry. The algebraic structure of the subobject classifier.
  • Wednesday, 5 June 2019, 15:30 (Sala Riunioni, DipMat) The interpretation of geometric logic in a topos. The internal logic of a topos.
  • Tuesday, 11 June 2019, 15:00 (Sala Riunioni, DipMat) Geometric functors. Grothendieck topoi.
  • Wednesday, 12 June 2019, 15:30 (Sala Riunioni, DipMat) Classifying topoi.

The references for the course are:

  • F. William Lawvere and Steve Schanuel, Conceptual Mathematics: A First Introduction to Categories, Cambridge U. Press, Cambridge, 1997.
  • Reyes, Reyes, Zolfaghari – Generic figures and their glueings. Polimetrica, 2008.
  • MacLane, Saunders, Moerdijk, Ieke. Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Springer Universitext, 1994.
  • Robert Goldblatt, Topoi, the Categorial Analysis of Logic. Dover Revised edition, 2006.
  • Peter Johnstone, Sketches of an Elephant: a Topos Theory Compendium, Oxford U. Press, Oxford. Volume 1 (2002), Volume 2, (2002), Volume 3 (in preparation).

« Previous PageNext Page »