Corso di “Algebra della Logica” alla scuola AILA 2017
This year I teach a course (12 hours) a the AILA summer school of logic. Below one can find the slides of my first three lectures and some references.
- Lecture 1 (Classical propositional logic and Boolean algebras)
- Lecture 2 (Algebraic completeness of propositional calculus)
- Lecture 3 (Abstract Algebraic Logic)
- Lecture 4 (Dualities) lecture material:
- Lecture 5 and 6 (Non classical logic) references:
- Y. Venema, Algebras and Coalgebras, in: J. van Benthem, P. Blackburn and F. Wolter (editors), Handbook of Modal Logic, 2006, pp 331-426.
- R. L. O. Cignoli, I. M. L. D’Ottaviano e D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Vol. 7 Springer, 2000.
Lecture notes by Guido Gherardi (Computability Theory).
MVL
Course on Many-Valued Logics (Autumn 2014)
Contents of the page
- News
- Contents of the classes
- Course material
- Practicalities
- Grading and homework assignments
- Course Description and Prerequisites
Contents
The course covers the following topics:
- Basic Logic and Monoidal t-norm Logic.
- Substructural logics and residuated lattices.
- Cut elimination and completions.
- Lukasiewicz logic.
More specifically, this is the content of each single class:
- September, 1: Introduction, motivations, t-norms and their residua. Section 2.1 (up to Lemma 2.1.13) of the Course Material 1.
- September, 5: Basic Logic, Residuated lattices, BL-algebras, linearly ordered BL-algebras. Section 2.2 and 2.3 (up to Lemma 2.3.16) of the Course Material 1.
- September, 8: Lindenbaum-Tarski algebra of BL, algebraic completeness. Monodical t-norm logic, MTL-algebras, standard completeness. The rest of Course Material 1 (excluding Section 2.4) and Course Material 2.
- September, 12: Ordinal decomposition of BL-algebras. Mostert and Shield Theorem. Course Material 3.
- September, 15: Ordinal decomposition of BL-algebras (continued). Algebrizable logics and equivalent algebraic semantics. Course Material 4.
- September, 19: Algebrizable logics and equivalent algebraic semantics (continued). Course Material 4.
- September, 22: Algebrizable logics and equivalent algebraic semantics (continued): Leibniz operator and implicit characterisations of algebraizability. Course Material 4.
- September, 26: Leibniz operator and implicit characterisations of algebraizability (continued). Course Material 4. Gentzen calculus and the substructural hierarchy. Course Material 5 (to be continued).
- September, 29: Structural quasi-equations and $N_2$ equations. Residuated frames. Course Material 5 (Continued).
- October, 3: Analytic quasi-equations, dual frames, and MacNeille completions. Course Material 5 (Continued).
- October, 9: Atomic conservativity, closing the circle of equivalencies. Course Material 5 (Continued).
- October, 10: Lukasiewicz logic and MV-algebras. Mundici’s equivalence. Course Material 6.
- October, 17: The duality between semisimple MV-algebras and Tychonoff spaces. Course Material 7.
Course material
The material needed during the course can be found below.
- Course material 1
- Course material 2
- Course material 3
- Course material 4
- Course material 5
- Course material 6
- Course material 7
- An example of a possible final exam can be downloaded here.
The homework due during the course can be found below.
- Homework 1 (Deadline 12th September)
- Homework 2 (Deadline 19th September)
- Homework 3 (Deadline 26th September)
- Homework 4 (Deadline 3d October)
- Homework 5 (Deadline 10th October)
- Homework 6 (Deadline 17th October)
Practicalities
Staff
- Lecturer: Luca Spada
Dates/location:
- Classes run from the 1st of September until the 17th of October; there will be 14 classes in total.
- There are two classes weekly.
- Due to the high number of participants classrooms will change weekly, datanose.nl will always be updated with the right classrooms.
Grading and homeworks
- The grading is on the basis of weekly homework assignments, and a written exam at the end of the course.
- The homework assignments will be made available weekly through this page.
- The final grade will be determined for 2/3 by homeworks, and for 1/3 by the final exam.
- In order to pass the course, a score at least 50/100 on the final exam is needed.
More specific information about homework and grading:
- You are allowed to collaborate on the homework exercises, but you need to acknowledge explicitly with whom you have been collaborating, and write the solutions independently.
- Deadlines for submission are strict.
- Homework handed in after the deadline may not be taken into consideration; at the very least, points will be subtracted for late submission.
- In case you think there is a problem with one of the exercises, contact the lecturer immediately.
Course Description
Many-valued logics are logical systems in which the truth values may be more than just “absolutely true” and “absolutely false”. This simple loosening opens the door to a large number of possible formalisms. The main methods of investigation are algebraic, although in the recent years the proof theory of many-valued logics has had a remarkable development.
This course will address a number of questions regarding classification, expressivity, and algebraic aspects of many-valued logics. Algebraic structures as Monoidal t-norm based algebras, MV-algebras, and residuated lattices will be introduced and studied during the course.
The course will cover seclected chapters of the following books.
- P. Hájek, ‘Metamathematics of Fuzzy Logic‘, Trends in Logic, Vol. 4 Springer, 1998.
- P. Cintula, P. Hájek, C. Noguera (Editors). ‘Handbook of Mathematical Fuzzy Logic‘ – Volume 1 and 2. Volumes 37 and 38 of Studies in Logic, Mathematical Logic and Foundations. College Publications, London, 2011
- R. L. O. Cignoli, I. M. L. D’Ottaviano e D. Mundici, ‘Algebraic Foundations of Many-Valued Reasoning‘, Trends in Logic, Vol. 7 Springer, 2000
- D. Mundici. ‘Advanced Lukasiewicz calculus and MV-algebras‘, Trends in Logic, Vol. 35 Springer, 2011.
Prerequisites
It is assumed that students entering this class possess
- Some mathematical maturity.
- Familiarity with the basic theory of propositional and first order (classical) logic.
Basic knowledge of general algebra, topology and category theory will be handy but not necessary.
Course on Many-Valued Logic at ILLC
Starting form the 1st of September 2014, I will teach a course on Many-Valued Logics at the University of Amsterdam. The webpage with all the details can be found here.
Logica II per Informatica
This year I will teach the course “Logica II” for the M.sc. degree in Computer Science. I think I will follow Moore’s modified method for the course (see also the wikipedia entry for the original method).
There are some freely available notes, looking promising, I will use during the course.
Other reference (standard books) that may be used as sources of inspiration during the course are:
- Mendelson, E. Introduction to Mathematical Logic. Chapman & Hall 2009.
- Mundici, D. Logica – Metodo breve. Springer Verlag 2011.
- Asperti, A. and Ciabattoni, A. Logica a Informatica. McGraw-Hill 2003
Further information will follow on this website.