Corso di Algebra Universale (2020/21)
News
Descrizione del corso
Nei corsi di algebra dei primi anni si incontrano vari tipi di strutture: gruppi, anelli, campi, spazi vettoriali, etc. Molte tecniche utilizzate per il loto studio si rassomiglano e ci sono teoremi che si ripetono (es. teoremi di isomorfismo) cambiando di poco il linguaggio.
Gruppi, anelli, etc. vengono studiati approfonditamente per la loro importanza storica e perché sono onnipresenti in matematica. Ma ci sono molte altre strutture che sono interessanti per via delle loro applicazioni: reticoli, monoidi, semianelli, etc. A dire il vero ci sono centinaia di strutture algebriche attualmente studiate per via delle loro applicazioni in informatica, fisica, economia, etc.
Ci si può ragionevolmente domandare se ogni volta che si scopre qualche struttura di interesse bisogna ricominciare tutto da capo o se è possibile esportare tecniche e costruzioni da altre strutture simili. O, in maniera molto più ambiziosa, ci si può chiedere se esistano teoremi che riguardino TUTTE le strutture, che in qualche modo ne permettano la classificazione, suggeriscano le proprietà essenziali da studiare o possano dare immediatamente informazioni cruciali su strutture algebriche che mai incontrate prima.
La risposta a questa domanda è estremamente positiva. Da questa domanda si è sviluppata la branca della matematica che va sotto il nome di algebra universale. È una branca relativamente nuova, con un numero sorprendente di risultati. Il suo studio porta a una visione ampia, matura e profonda dell’algebra. Si riescono a mettere a fuoco chiaramente quali sono gli aspetti che le strutture hanno in comune, quali sono i punti chiave che fanno funzionare le teorie, quali sono le direzioni in cui cercare per ottenere nuovi teoremi.
Per dare un esempio dei risultati potenti e inaspettati che è possibile incontrare, si pensi che esistono classificazioni che permettono di stabilire se una data classe di strutture è chiusa rispetto a operazioni standard come immagini omomorfe, sottoalgebre o prodotti esclusivamente in base alla forma sintattica degli assiomi che la definiscono. Ad esempio il teorema di Birkhoff afferma che una classe di strutture è chiusa rispetto a immagini omomorfe, sottoalgebre o prodotti se e soltanto se essa può essere definita tramite equazioni.
Prerequisiti
È richiesta familiarità con gli argomenti di base di algebra e di logica.
Frequenza
La frequenza non è obbligatoria ma è fortemente consigliata.
Contenuti
Il corso coprirà i seguenti argomenti:
- Sottoalgebre, Omomorfismi e Congruenze.
- Richiami di Teoria dei Reticoli
- Prodotti Diretti e Prodotti Sottodiretti.
- Limiti Diretti e Limiti Inversi di Sistemi di Algebre.
- Classi Equazionali
- Polinomi e Algebre Polinomiali.
- Algebre Libere.
- Teorema HSP
- Mal’cev Type Theorems
- (Problema della Parola)
Più dettagliatamente, qui sotto saranno elencati i contenuti delle singole lezioni:
- 03/03/2021 – Introduzione al corso. Definizione ed esempi di algebre.
- 05/03/2021 – Omomorfismi, sottalgebre e prodotti diretti. Gli operatori H, S e P.
- 10/03/2021 – Relazioni, congruenze e kernel. Il primo teorema di isomorfismo.
- 12/03/2021 – Congruenze generate da una relazione.
- 17/03/2021 – Immagini dirette e inverse di omomorfismi e loro proprietà reticolari. Secondo teorema di isomorfismo.
- 19/03/2021 – Teorema di corrispondenza e terzo teorema di isomorfismo. Prodotti diretti.
- 24/03/2021 – Prodotti sottodiretti e algebre sottodirettamente irriducibili.
- 26/03/2021 – Reticolo delle congruenze delle algebre sottodirettamente irriducibili e Teorema di Birkhoff di rappresentazione sottodiretta.
- 31/03/2021 – “V = HSP” e sue conseguenze.
- 07/04/2021 – Reticoli completi e operatori di chiusura.
- 09/04/2021 – Cloni.
- 14/04/2021 – Il clone delle operazioni definibili di un’algebra.
- 16/04/2021 – Connessioni di Galois e relazione di invarianza rispetto alle operazioni.
- 21/04/2021 – Cloni come insiemi di operazioni invariati rispetto a delle relazioni.
- 23/04/2021 – Algebre assolutamente libere.
- 28/04/2021 – La congruenza di un’algebra associata a una classe di strutture
- 30/04/2021 – Algebre libere in una varietà.
- 05/05/2021 – Validità di un equazione in una classe di algebre.
- 07/05/2021 – Teorema di Birkhoff sulle varietà.
- 12/05/2021 – Condizioni alla Malcev.
14/05/2021 –- 19/05/2021 – Algebre finitamente presentabili e algebre parziali, proprietà dell’immersione finita e proprietà del modello finito.
- 21/05/2021 – Collegamenti tra FEP, FMP e SFMP.
- 26/05/2021 – Algebre residualmente finite.
- 28/05/2021 – Seminario Constraint Satisfaction Problems (CSP).
Materiale del corso
- Testi consigliati:
- Clifford Bergman. Universal Algebra: fundamental and selected topics. CRC press. 2011
- S. Burris, H. P. Sankappanavar. A course on universal algebra. Disponibile gratuitamente online.
Aspetti pratici
- Docente: Luca Spada
- Semestre: secondo.
- Link Team
- Durata: 48 ore (12 settimane).
- CFU: 6
Date/aule:
- Le lezioni cominceranno mercoledì 3 marzo su Microsoft Teams.
- Ci sono due lezioni a settimana:
- lunedì dalle 9:00 alle 11:00, online su Teams.
- venerdì dalle 9:00 alle 11:00, online su Teams.
Esercizi/Esami
Esame:
- L’esame per questo corso è solo orale. Per sostenere l’esame contattare il docente.
L’esame orale verte su tutti gli argomenti trattati durante il corso. Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso e di averli compresi, mostrando di sapere costruire esempi in maniera indipendente. In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi). Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).
Appelli d’esame:
- Appelli estivi: 9 giugno 2021 e 12 luglio 2021 (Il primo a distanza il secondo sia in presenza che a distanza).
- Appello autunnale: 3 settembre 2021 (sia in presenza che a distanza).
- Un ulteriore appello nel periodo tra l’8 novembre e il 10 dicembre 2021.
Commenti, lamentele, domande: scrivere a Luca Spada
Corso di Matematica I per Ingegneria Meccanica e Gestionale (2016/17)
Contenuti della pagina
News
Pubblicati i risultati del secondo appello invernale. Vedi
Pubblicati i risultati del primo appello invernale. Vedi
Descrizione del corso
Prerequisiti
È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.
Contenuti
Il corso coprirà i seguenti argomenti:
- Successioni e serie numeriche.
- Funzioni reali a una variabile: continuità, derivate e integrali.
Più dettagliatamente, qui sotto sono elencati i contenuti delle singole lezioni:
- 14/09/2016 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
- 15/09/2016 – Relazioni: relazioni d’ordine, relazioni di equivalenza. Funzioni: iniettività, suriettività, biezioni, monotonia. Insiemi numerici.
- 16/09/2016 – Massimi e minimi. Maggiorante, minorante, estremo superiore e inferiore di un insieme ordinato.
- 21/09/2016 – San Matteo. Non c’è lezione.
- 22/09/2016 – Rappresentazione cartesiana. Vettori e operazioni tra vettori. Spazi vettoriali e sottospazi. Combinazioni lineari. Dipendenza lineare.*
- 23/09/2016 – Base di uno spazio vettoriale, dimensione.*
- 28/09/2016 – Teorema di Rouché-Capelli in forma vettoriale.* Disequazioni algebriche.
- 29/09/2016 – Disequazioni irrazionali, esponenziali e logaritmiche.
- 30/09/2016 – Funzioni trigonometriche. Cenni sui numeri complessi.
- 05/10/2016– Forma trigonometrica dei numeri complessi. Potenze radici di numeri complessi. Dominio di una funzione. Principio di Induzione.
- 06/10/2016 – Esercitazione.
- 07/10/2016 – Descrizioni analitiche della retta: equazione implicita, esplicita e parametrica. Fascio di rette per un punto.
- 12/10/2016 – Esercitazione.
- 13/10/2016 – Prima prova intermedia.
- 14/10/2016 – Definizione di successione e convergenza di una successione.
- 19/10/2016 – Successioni convergenti divergenti e non regolari.
- 20/10/2016 – Teorema della permanenza del segno e sue conseguenze.
- 21/10/2016 – Criteri di confronto per le successioni e limiti notevoli: potenze, radici e trigonometrici.
- 26/10/2016 – Successioni monotone e loro proprietà. Il numero di Nepero e.
- 26/10/2016 – Esercitazione.
- 27/10/2016 – Teorema di Bolzano-Weierstrass. Successioni di Cauchy e loro proprietà. Stima degli errori.
- 28/10/2016 – Limiti di funzioni.
- 02/11/2016 – Operazioni con i limiti di funzioni. Limiti di funzioni composte.
- 03/11/2016 – Funzioni continue, discontinuità. Teoremi sulle funzioni continue: permanenza del segno, esistenza degli zeri, esistenza dei valori intermedi.
- 04/11/2016 – Teorema di Weierstrass. Relazioni tra monotonia e funzioni continue. Grafico di una funzione.
- 09/11/2016 – Derivate: interpretazione fisica e geometrica.
- 10/11/2016 – Formule per le derivate: somma, prodotto e frazione; funzione composta, funzione inversa. Teorema di Fermat.
- 11/11/2016 – Teorema di Rolle e teorema di Lagrange. Esercitazione.
- 16/11/2016 – Uso delle derivate per la ricerca di massimi e minimi.
- 17/11/2016 – Seconda prova intermedia.
- 18/11/2016 – Derivate seconde. Criterio di convessità. Teorema di de l’Hôpital (senza dimostrazione).
- 23/11/2016 – Integrale definito. Idea intuitiva e definizione tramite somme integrali inferiori e superiori.
- 24/11/2016 – Proprietà degli integrali definiti. Teorema di Cantor e integrabili delle funzioni continue.
- 25/11/2016 – Teorema della media. Integrali indefiniti.
- 30/11/2016 – Non c’è lezione.
- 01/12/2016 – Integrali elementari. Scomposizione in somma. Integrazione per parti. Integrazione per sostituzione.
- 02/12/2016 – Calcolo di aree e di volumi di solidi di rotazione. Integrali impropri.
- 07/12/2016 – Formula di Taylor con resto di Peano, resto integrale e resto di Lagrange (quest’ultimo senza dimostrazione).
- 07/12/2016 – Integrali di funzioni razionali e sostituzioni di Eulero.
- 08/12/2016 – Festa dell’Immacolata. Non c’è lezione.
- 09/12/2016 – Non c’è lezione.
- 14/12/2016 – Introduzione alle serie. Criterio di Cauchy e teorema del resto.
- 15/12/2016 – Serie geometrica e serie armonica generalizzata. Criterio del confronto e criterio degli infinitesimi.
- 16/12/2016 – Criterio della radice. Criterio di convergenza per serie a segni alternati. Convergenza assoluta.
- 21/12/2016 – Esercitazione.
- 21/12/2016 – Esercitazione.
- 22/12/2016 – Terza prova intermedia.
- 23/12/2016 – Esercitazione.
Due lezioni perse verranno recuperate mercoledì 7 dicembre e mercoledì 21 dicembre. Entrambe in aula E dalle 16:30 alle 18:30.
La lezione persa per San Matteo verrà recuperata mercoledì 26 ottobre alle 16:30 in Aula E.
*Gli argomenti di algebra lineare non sono richiesti né all’esame scritto né all’orale.
Materiale del corso
- Il testo di riferimento principale è: Paolo Marcellini, Carlo Sbordone. Analisi Matematica. Vol 1, Liguori Editore.
- Un utile complemento è dato dal rispettivo libro di esercitazioni: Paolo Marcellini, Carlo Sbordone. Esercitazioni di Matematica. Vol 1 e 2, Liguori Editore.
Aspetti pratici
- Docente: Luca Spada
Crediti/ore:
- Durata: 90 ore.
- CFU: 9
Date/aule:
- Le lezioni cominceranno il 13 settembre.
- Ci sono tre lezioni a settimana:
- mercoledì dalle 8:45 alle 10:30, aula A.
- giovedì dalle 14:30 alle 16:30, aula A.
- venerdì dalle 8:45 alle 10:30, aula A.
Esercizi/Esami
Esame:
- Ci saranno tre prove di esonero durante il corso. Chi conseguirà un voto medio pari o superiore a 18 potrà sostenere direttamente l’esame orale. Sarà comunque possibile per tutti sostenere l’esame scritto a gennaio e ai seguenti appelli.
- È necessario presentarsi all’esame con un documento di riconoscimento.
- Per poter partecipare all’esame è assolutamente necessario registrarsi su esse3, in caso di difficoltà rivolgersi alle segreterie.
- All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
- Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.
- L’esame orale verte su tutti gli argomenti trattati durante il corso. Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso. In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi). Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).
Appelli d’esame:
- Primo appello invernale
- scritto: lunedì 23 gennaio 2017, ore 9:00 (aula A). Traccia con soluzioni. Esiti 23/01/2017.
-
- orale (i candidati verranno chiamati in ordine alfabetico, cominciando da chi ha superato le prove intermedie, ci saranno circa 20 orali al giorno):
- 24 gennaio dalle 15:00 alle 19:00 Aula E.
- 25 gennaio dalle 15:00 alle 19:00 Aula E.
- 26 gennaio dalle 15:00 alle 19:00 Aula F.
- 27 gennaio dalle 9:00 alle 12:00 Aula A.
- orale (i candidati verranno chiamati in ordine alfabetico, cominciando da chi ha superato le prove intermedie, ci saranno circa 20 orali al giorno):
- Secondo appello invernale
- scritto: martedì 14 febbraio 2017, ore 9:00 Aula A. Traccia con soluzioni. Esiti 14/02/2017.
- orale (i candidati verranno chiamati in ordine alfabetico):
- mercoledì 15 febbraio 9:30 – 13:00 aula 107.
- mercoledì 15 febbraio 15:00 – 19:00 aula 133.
- giovedì 16 febbraio 9:30 – 12:30 aula 129.
- giovedì 16 febbraio 15:00 – 19:00 aula 129.
- Primo appello estivo.
- scritto: lunedì 12 giugno, ore 9:00 aula M. Traccia con soluzioni. Esiti 12/06/2017.
- orale: a partire da mercoledì 14 ore 10:00. Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–)
- Secondo appello estivo.
- scritto: lunedì 3 luglio, ore 9:00 aula A. Traccia con soluzioni. Esiti 2/7/17.
- orale: martedì 4 ore 9:00. Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–).
- Terzo appello estivo
- scritto: lunedì 4 settembre, ore 9:00 aula I. Traccia con soluzioni. Esiti 4/9/17
- orale: a partire da martedì 12 ore 10:00. Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–)
- Primo appello autunnale (RISERVATO a studenti FUORI CORSO)
- scritto: mercoledì 25 ottobre, ore 9:00.
- Secondo appello autunnale (RISERVATO a studenti FUORI CORSO)
- scritto: 21 dicembre 2017, ore 9:00. Aule 21, 22, 23, 24.
- orale: immediatamente dopo l’esame scritto.
- Pre-appello estivo autunnale (RISERVATO a studenti ISCRITTI AL SECONDO ANNO)
- scritto: 21 dicembre 2017, ore 9:00. Aule 21, 22, 23, 24.
- orale: immediatamente dopo l’esame scritto.
Prove intermedie:
- Esempi per la prima prova: Esempio 1, Esempio 2.
- prima prova: giovedì 13 ottobre, ore 14:30. Traccia A con soluzioni. Traccia B con soluzioni. Esiti prima prova.
- seconda prova: giovedì 17 novembre, ore 14:30. Traccia A con soluzioni. Traccia B con soluzioni. Esiti seconda prova.
- terza prova: giovedì 22 dicembre, ore 14:30. Terza prova intermedia – Traccia A con soluzioni. Terza prova intermedia – Traccia B con soluzioni.
- Esito finale prove inter-corso.
- Sono ammessi all’orale tutti e soli coloro che hanno conseguito un voto medio pari o superiore a 18.
- Per sostenere l’orale è comunque necessario registrarsi per l’appello su esse3 (come per fare lo scritto, ma presentandosi direttamente all’orale).
- È possibile presentarsi agli esami orali sia di gennaio che di febbraio.
Matematica I per Scienze Ambientali (2016/17)
Contenuti della pagina
News
- A partire dall’appello di settembre 2017 (incluso) il responsabile del corso Matematica II sarà la prof.ssa Chiara Nicotera. Per tutte le informazioni riguardo al corso, come ad esempio programma, modalità di esame, etc., rivolgersi a lei. Tutte le richieste riguardanti il corso Matematica I possono continuare a essere inviate al prof. Luca Spada.
- Gli studenti di VCA che hanno nel piano di studi l’esame Matematica (12 CFU) dovranno prima sostenere l’esame di Matematica I (6 CFU) con il prof. Spada e successivamente quello di Matematica II (6 CFU) con la prof.ssa Nicotera.
- Disponibile il Programma di Matematica I e II e di Matematica (12 CFU) per gli studenti del corso di laurea in VCA. Per gli studenti del corso di laurea in VCA l’esame prevede una prova scritta e una orale.
Descrizione del corso
Prerequisiti
È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.
Contenuti
Il corso coprirà i seguenti argomenti:
- Algebra lineare.
- Funzioni reali a una variabile: continuità e derivate, studio di funzione.
Durante il corso qui sotto saranno elencati i contenuti delle singole lezioni:
- 04/10/2016 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
- 06/10/2016 – Calcolo combinatorio.
- 11/10/2016 – Definizione di funzione. Vettori: prodotto per uno scalare e prodotto scalare; combinazione lineare.
- 13/10/2016 – Trigonometria: funzioni seno e coseno e loro proprietà. Interpretazione del prodotto scalare. Dipendenza lineare tra vettori.
- 18/10/2016 – Spazio vettoriale. Base di un insieme di vettori. Matrici: somma e prodotto righe per colonne.
- 20/10/2016 – Matrici di rotazione. Determinante di una matrice.
- 25/10/2016 – Soluzioni di sistemi lineari omogenei e completi. Teorema di Rouché-Capelli.
- 27/10/2016 – Diagonalizzazione di matrici. Autovalori e autovettori.
- 1/11/2016 – Ognissanti.
- 3/11/2016 – Funzioni reali in una variabile. Dominio di una funzione. Iniettività e suriettività. Funzioni composte. Funzioni monotone.
- 8/11/2016 – Funzioni elementari: funzioni lineari e funzioni potenza.
- 10/11/2016 – Funzioni elementari: esponenziale e logaritmo.
- 15/11/2016 – Limiti di funzioni. Proprietà dei limiti.
- 17/11/2016 – Limiti notevoli. Funzioni continue. Ordini di infinito e di infinitesimo. Successioni.
- 22/11/2016 – Limiti destro e sinistro. Tipi di discontinuità.
- 24/11/2016 – Derivate. Regolo per il calcolo delle derivate. Uso delle derivate per trovare massimi e minimi locali e lo studio della convessità. Cenni sulla formula di Taylor.
- 29/11/2016 – Non ci sarà lezione.
- 01/12/2016 – Teorema di de l’Hôpital. Applicazioni delle derivate.
- 06/12/2016 – Esercitazione.
- 08/12/2016 – Festa dell’Immacolata.
- 13/12/2016 – Tutorato.
- 15/12/2016 – Prova finale.
- 20/12/2016 – Tutorato.
- 22/12/2016 – Tutorato.
Materiale del corso
- Il testo di riferimento principale è: Dario Benedetto, Mirko Degli Espositi, Carlotta Maffei. Matematica per le Scienze della Vita. Casa Editrice Ambrosiana. 2008.
Programma di Matematica I e II (6+6 CFU) e di Matematica (12 CFU) per gli studenti del corso di laurea in VCA.
Aspetti pratici
- Docente: Luca Spada
Crediti/ore:
- Durata: 48 ore (10 settimane).
- CFU: 6
- Frequenza: non obbligatoria.
Date/aule:
- Le lezioni cominceranno il 4 ottobre 2016.
- Ci sono due lezioni a settimana:
- martedì dalle 14:00 alle 16:00, Aula F7
- giovedì dalle 9:00 alle 12:00, Aula F7.
- Il tutorato si tiene ogni mercoledì e venerdì dalle 16:00 alle 18:00 in aula F7 a partire da mercoledì 2 novembre.
OFA
Le lezioni dell’OFA si terranno a partire da martedì 10 gennaio con il seguente orario:
- Martedì 14:00 – 16:00 Aula F7
- Mercoledì 14:00 – 16:00 Aula F7
- Giovedì 10:00 – 12:00 Aula F7
Esercizi/Esami
Eventuali esercizi assegnati durante il corso possono essere trovati qui sotto.
- Richiami ed esercizi sulle disequazioni.
- Traccia della prima prova intermedia.
- Traccia della seconda prova intermedia.
- Traccia della terza prova intermedia.
- Esito finale prove intermedie.
- Per sostenere l’orale è necessario registrarsi per l’appello su esse3 (come per fare lo scritto, ma presentandosi direttamente all’orale).
- Gli esami orali si svolgeranno il 18, 19 e 20 gennaio dalle 15:00 alle 18:00, nell’aula F7.
Appelli d’esame:
- 17 gennaio 2017, ore 15:00, aula F7. Traccia della prova scritta 2017-01-17. Risultati 2017-01-17. Gli esami orali si svolgeranno il 18, 19 e 20 gennaio dalle 15:00 alle 18:00, nell’aula F7.
- 7 febbraio 2017, ore 15:00, aula F7. Traccia della prova scritta 2017-02-07. Risultati 2017-02-07. Gli esami orali si terranno lunedì 13 e martedì 14 alle 16:00 (Aula F7).
- 4 aprile 2017 (riservato a fuoricorso), ore 15:00, aula F7. Traccia della prova scritta 2017-04-04. Risultati 2017-04-04. Gli esami orali si terranno mercoledì 5 alle 9:00 (Studio prof. Spada, stanza 25 DipMat).
- 13 giugno 2017, ore 15:00, aula F7. Gli esami orali si terranno mercoledì 14 alle 15:00 (Aula F7). Traccia della prova scritta 2017-06-13. Esiti 13-6-2017.
- 4 luglio 2017, ore 15:00, aula F7. Gli esami orali si terranno mercoledì 5 alle 9:00 (Studio prof. Spada, stanza 25 DipMat). Traccia della prova scritta 2017-06-13. Esiti-4-7-17.
- 19 settembre 2017, ore 15:00, aula F7. Gli esami orali si terranno mercoledì 20 alle 15:30 (Studio prof. Spada, stanza 25 DipMat). Traccia della prova scritta 2017-09-19. Esiti-19-9-17.
- 7 novembre 2017 (riservato a fuoricorso), ore 15:00, aula F7. Traccia della prova scritta 2017-11-7. Esiti-7-11-17.
- 20 dicembre 2017 (riservato a studenti dal II anno in poi), ore 15:00, aula F2. Gli esami orali si terranno giovedì 21 alle 16:30 (Studio prof. Spada, stanza 25 DipMat). Traccia della prova scritta 2017-12-20. Esiti.
Informazioni sugli esami:
- L’esame è scritto e orale.
- È sempre necessario presentarsi agli esami con un documento di riconoscimento.
- È assolutamente necessario registrarsi su esse3 per poter sostenere l’esame, anche per chi deve solo sostenere l’orale.
- All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
- Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.