Corso di Matematica I per Scienze Ambientali (2017/18)
Contenuti della pagina
News
Attenzione la lezione del Help Teaching del 25 giugno è rinviata al 26 giugno ore 9,00 – 12,00 aula P21.
Fissate ulteriori date dell’Help Teaching per maggio 2018. Maggiori informazioni più sotto.
Inizio dell’Help Teaching: mercoledì 31 gennaio. Maggiori informazioni più sotto.
Dal 19 febbraio al 30 aprile il prof. Spada sarà fuori sede.
Descrizione del corso
Prerequisiti
È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado) e di geometria euclidea.
Contenuti
Il corso coprirà i seguenti argomenti:
- Algebra lineare.
- Funzioni reali a una variabile: continuità e derivate, studio di funzione.
Durante il corso qui sotto saranno elencati i contenuti delle singole lezioni:
- 04/10/2017 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
- 06/10/2017 – Relazioni e funzioni. Dominio di funzione. Funzioni iniettive, suriettive, biettive, monotone. Funzioni inverse.
- 11/10/2017 – Funzioni elementari: potenze, radici, esponenziali, logaritmiche.
- 13/10/2017 – Funzioni trigonometriche.
- 18/10/2017 – Disequazioni algebriche, irrazionali, esponenziali, logaritmiche e trigonometriche.
- 20/10/2017 – Definizione di successione. Successioni convergenti, divergenti e regolari.
- 25/10/2017 – Esempi di successioni. Teorema delle successioni monotone. Successioni definite per ricorrenza.
- 27/10/2017 – Limiti di funzioni.
- 1/11/2017 – Ognissanti.
- 3/11/2017 – Limiti destro e sinistro. Funzioni continue.
- 8/11/2017 – Derivate: definizione e formule per il loro calcolo.
- 10/11/2017 – Applicazioni delle derivate: ricerca di massimi e minimi. Studio del grafico di funzione.
- 15/11/2017 – Applicazioni delle derivate: minimizzazione e massimizzazione.
- 17/11/2017 – Derivate seconde: concavità e convessità. Formula di Taylor.
- 22/11/2017 – Vettori e operazioni tra di essi.
- 24/11/2017 – Spazi vettoriali e loro dimensione, trasformazioni lineari, matrici.
- 29/11/2017 – Teorema di Rouché-Capelli. Metodo di Cramer per la risoluzione di sitemi lineari.
- 01/12/2017 – Calcolo del determinante e del rango di una matrice. Sistemi omogenei.
- 06/12/2017 – Non c’è lezione.
- 08/12/2017 – Immacolata.
- 13/12/2017 – Diagonalizzazione di una matrice: autovalori e autovettori.
- 15/12/2017 – Cenni di matematica combinatoria.
Materiale del corso
- Il testo di riferimento principale è Carlo Sbordone, Francesco Sbordone. Matematica per le Scienze della Vita. Edises 2014.
- Per gli approfondimenti di algebra lineare (risoluzione di sistemi lineari e diagonalizzazione) possono essere usate le dispense del prof. Sergio Bianchi disponibili qui: Dispense algebra lineare
- Per gli approfondimenti di calcolo combinatorio possono essere usate le dispense del prof. Giuseppe Anichini disponibili qui: Dispense calcolo combinatorio
- Per gli studenti immatricolati fino al 2015/16 del corso di laurea in VCA: Programma di Matematica I e II (6+6 CFU) e di Matematica (12 CFU)
Aspetti pratici
- Docente: Luca Spada
- Tutor: Federica Di Stefano
- OFA (ottobre): Cristina Ripoli
Crediti/ore:
- Durata: 48 ore (10 settimane) + 22 ore di tutorato.
- CFU: 6
- Frequenza: non obbligatoria, ma fortemente consigliata.
Date/aule:
- Ci sono due lezioni a settimana:
- mercoledì 14:00 — 17:00. Aula F7
- venerdì 12:00 — 14:00. Aula F7
- Un tutorato a settimana (a partire dal 19 ottobre):
- giovedì 16:00 — 18:00. Aula F7.
- Due lezioni OFA a settimana (a partire dal 16 ottobre):
- lunedì 14:30 — 17:00. Aula P 10.
- martedì 14:30 — 17:00. Aula P 10.
Esercizi/Esami
Help Teaching
Docente: dott.ssa Antonia Esposito (antesposito@unisa.it)
- 31 gennaio dalle 9,30 alle 12,30 aula F7.
- 7 febbraio dalle 9,30 alle 12,30 aula F7.
- 12 febbraio dalle 9,30 alle 12,30 aula F7.
- 16 maggio ore 9,00 – 12,00 aula P15.
- 25 maggio ore 11,00 – 12,00 Laboratorio di didattica della Matematica, Piano -1.
- 30 maggio ore 9,00 – 12,00 aula P15.
- 31 maggio ore 9,00 – 12,00 aula P15.
25 giugno ore 9,30 – 12,30 aula P1726 giugno ore 9,00 – 12,00 aula P21- 29 giugno ore 9,30 – 12,30 aula P17
- 6 luglio ore 9,30 – 12,30 aula P17
OFA
Le lezioni dell’OFA si terranno a settembre.
Materiale aggiuntivo.
- Richiami ed esercizi sulle disequazioni.
- Esercizi 1, Esercizi 2, Esercizi 3.
- Esempio traccia d’esame 1.
- Esempio traccia d’esame 2.
- Esempio traccia d’esame 3.
- Esempio traccia d’esame 4.
Appelli d’esame:
- Primo appello.
- Scritto: 23 gennaio 2018 ore 15:00 Aula F7, Dipartimento di Matematica (edificio F2). Traccia con soluzioni. Esiti 23/1/2018
- Orale: 24 gennaio 2018 ore 10:00 Aula F7, Dipartimento di Matematica (edificio F2).
- Secondo appello.
- Scritto: 14 febbraio 2018 ore 15:00 Aula F7 Dipartimento di Matematica (edificio F2). Traccia con soluzioni. Esiti 14/2/2018
- Orale: 15 febbraio 2018 ore 9:00 Aula F7, Dipartimento di Matematica (edificio F2).
- Terzo appello
- Scritto: 10 aprile 2018 ore 10:00 Aula P21. Traccia con soluzioni, Esiti 10/4/18.
- Orale: 19 aprile, 11.30 studio prof.ssa Cristina Coppola.
- Quarto appello
- Scritto: 5 giugno 2018 ore 15:00 Aula F7 Dipartimento di Matematica (edificio F2). Traccia con soluzioni. Esiti 5/6/2018
- Orale: 6 giugno 2018 ore 11:30 studio prof. Luca Spada, oppure 7 giugno 2018 ore 9:30 studio prof. Luca Spada
- Quarto appello
- Scritto: 10 luglio 2018 ore 15:00 Aula F7 Dipartimento di Matematica (edificio F2). Traccia con soluzioni. Esiti
- Orale: 11 luglio 2018 ore 16:30 Studio prof. Luca Spada (edificio F2).
- Quinto appello
- Scritto: 26 settembre 2018 ore 15:00 Aula F7 Dipartimento di Matematica (edificio F2).
- Traccia con soluzioni. Esiti
- Orale: 28 settembre 2018 ore 11:30 Studio prof. Spada.
- 27 novembre 2018 (riservato agli studenti fuoricorso) ore 15:00 Aula F7 Dipartimento di Matematica (edificio F2).
Informazioni sugli esami:
- L’esame è scritto e orale.
- È sempre necessario presentarsi agli esami con un documento di riconoscimento.
- È assolutamente necessario registrarsi su esse3 per poter sostenere l’esame, anche per chi deve solo sostenere l’orale.
- All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
- Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.
Corso di Matematica I per Ingegneria Meccanica e Gestionale (2017/18)
Contenuti della pagina
News
- Dal 19 febbraio al 30 aprile il prof. Spada sarà fuori sede.
- Pubblicati gli esiti finali delle prove intermedie.
- Disponibile la versione finale del Formulario consultabile durante gli esami scritti.
Descrizione del corso
Prerequisiti
È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.
Frequenza
La frequenza non è obbligatoria ma è fortemente consigliata.
Contenuti
Il corso coprirà i seguenti argomenti:
- Insiemi numerici: N, Z, Q, R, C
- Funzioni elementari reali a una variabile: valore assoluto, potenza, radice, esponenziale, logaritmo, funzioni trigonometriche.
- Successioni in R, limiti.
- Proprietà delle funzioni continue.
- Derivate.
- Integrali definiti e indefiniti.
- Serie numeriche.
Più dettagliatamente, qui sotto sono elencati i contenuti delle singole lezioni:
- 12/09/2017 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
- 15/09/2017 – Relazioni, funzioni e loro proprietà.
- 19/09/2017 – Gli insiemi numerici. Gli assiomi dei numeri reali e loro prime conseguenze.
- 22/09/2017 – Funzioni elementari: funzioni polinomiali, radici, esponenziali, logaritmiche.
- 26/09/2017 – Non ci sarà lezione.
- 29/09/2017 – Non ci sarà lezione.
- 3/10/2017 – Funzioni trigonometriche. Disequazioni polinomiali, razionali, irrazionali, esponenziali, logaritmiche, trigonometriche.
- 6/10/2017 – Principio di induzione. Numeri complessi.
- 10/10/2017 – Esercitazione
- 13/10/2017 – Prima prova intermedia.
- 17/10/2017 – Definizione di successione. Successioni convergenti, divergenti e irregolari. Prime proprietà.
- 20/10/2017 – Teorema della permanenza del segno e sue conseguenze (teoremi di confronto).
- 24/10/2017 – Teorema delle successioni monotone. Successioni definite per ricorrenza. Limiti notevoli. Criterio del rapporto.
- 27/10/2017 – Il numero di Nepero. Teorema di Bolzano-Weieratrass. Successioni di Cauchy.
- 31/10/2017 – Limiti di funzioni. Operazioni con i limiti di funzioni. Limiti di funzioni composte.
- 4/11/2017 – Funzioni continue: definizione e prime proprietà. Teorema di Weierstrass.
- 7/11/2017 – Derivate. Definizione e prime proprietà.
- 10/11/2017 – Applicazioni delle derivate per minimi e massimi. Studio di funzione.
- 14/11/2017 – Algoritmo di Erone per la ricerca delle radici quadrate. Teoremi sulla continuità e i limiti delle funzioni monotone. Criterio per le funzioni costanti.
- 17/11/2017 – Derivate seconde: concavità del grafico di una funzione. Teorema di de l’Hôpital. O piccoli. Sviluppo di Taylor di una funzione.
- 21/11/2017 – Esercitazione.
- 24/11/2017 – Seconda prova intermedia.
- 28/11/2017 – Integrali definiti: definizione e prime proprietà.
- 01/12/2017 – Linearità dell’integrale. Integrabilità delle funzioni continue e limitate.
- 05/12/2017 – Metodi di integrazione: per parti, per sostituzione. Integrazione di funzioni fratte.
- 08/12/2017 – Immacolata.
- 12/12/2017 – Calcolo di aree e volumi. Integrali impropri.
- 15/12/2017 – Serie numeriche: introduzione
- 19/12/2017 – Serie numeriche: criteri di convergenza.
- 22/12/2017 – Prova finale
Materiale del corso
- Il testo di riferimento principale è: Paolo Marcellini, Carlo Sbordone. Analisi Matematica. Vol 1, Liguori Editore.
- Un utile complemento è dato dal rispettivo libro di esercitazioni: Paolo Marcellini, Carlo Sbordone. Esercitazioni di Matematica. Vol 1 e 2, Liguori Editore.
- Questo formulario sarà consultabile durante gli esami scritti. Eventuali proposte di integrazione possono essere inviate via email al docente.
Aspetti pratici
- Docente: Luca Spada
- Tutor: Serafina Lapenta e Anna Pierri
Crediti/ore:
- Durata: 90 ore (15 settimane).
- CFU: 9
Date/aule:
- Le lezioni cominceranno il 12 di settembre.
- Ci sono due lezioni a settimana:
- martedì dalle 15:45 alle 18:15,
- venerdì dalle 9:00 alle 11:30.
Esercizi/Esami
Esame:
- Ci saranno tre prove di esonero durante il corso. Chi conseguirà un voto medio pari o superiore a 18 potrà sostenere direttamente l’esame orale. Sarà comunque possibile per tutti sostenere l’esame scritto a gennaio e ai seguenti appelli.
- È necessario presentarsi all’esame con un documento di riconoscimento.
- Per poter partecipare all’esame finale è assolutamente necessario registrarsi su esse3, in caso di difficoltà rivolgersi alle segreterie.
- All’esame scritto e durante le prove intermedie è possibile usare il formulario a questo link.
- Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.
- L’esame orale verte su tutti gli argomenti trattati durante il corso. Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso. In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi). Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).
Appelli d’esame:
- Primo appello invernale
- esame scritto 15 gennaio 2018, ore 10:00, aula I. Traccia con soluzioni. Esiti.
- esame orale:
- 16 gennaio 2018, dalle 9:00 alle 14:00, aula 137.
- 17 gennaio 2018, dalle 9:00 alle 18:00, aula 23.
- Secondo appello invernale
- esame scritto 12 febbraio 2018, ore 9:00, aula C. Traccia con soluzioni. Esiti
- esame orale:
- 13 febbraio 2018, dalle 9:00 alle 18:00, aula L. (Studenti che hanno passato le prove intermedie.)
- 14 febbraio 2018, dalle 9:00 alle 13:00, aula L. (Studenti che hanno passato lo scritto del 12 febbraio.)
- Primo appello fuori corso esame scritto: 10 aprile 2018 ore 9:00.
- Secondo appello fuori corso esame scritto: 9 maggio 2018 ore 9:00.
- Primo appello estivo
- esame scritto: 20 giugno 2018 ore 9:00 aula I. Traccia con soluzioni. Esiti
- esame orale:
- 21 giugno 2018 ore 11:30 studio prof. Spada.
- 21 giugno 2018 ore 15:00 studio prof. Spada.
- 22 giugno 2018 ore 11:00 studio prof. Spada.
- Secondo appello estivo
- esame scritto: 10 luglio 2018 ore 9:00 aula I. Traccia con soluzioni. Esiti
- esame orale:
- 11 giugno 2018 ore 15:00 studio prof. Spada,
- 12 giugno 2018 ore 15:00 studio prof. Spada
- Terzo appello estivo
- esame scritto: 3 settembre 2018, ore 9:00 aula M. Traccia con soluzioni. Esiti
- esame orale: 4 settembre 2018, ore 15:00, studio del prof. Spada.
- Appello speciale
Prove intermedie:
Le prove intermedie si terranno:
- prima prova: venerdì 13 ottobre, dalle ore 9:00 alle ore 11:30 (aula A), Traccia A con soluzioni. Traccia B con soluzioni.Esiti prima prova.
- seconda prova: venerdì 24 novembre, dalle ore 9:00 alle ore 11:30 (aula A), Traccia A con soluzioni. Traccia B con soluzioni. Esiti seconda prova.
- terza prova: venerdì 22 dicembre, dalle ore 9:00 alle ore 11:30 (aula A). Traccia A con soluzioni.Traccia B con soluzioni. Esiti finali.
- Chi supera le prove intermedie può sostenere l’orale negli appelli di gennaio, febbraio, giugno o luglio.
- Per sostenere l’orale è comunque necessario registrarsi per l’appello su esse3 (come per fare lo scritto, ma presentandosi direttamente all’orale).
- Esempi: Traccia 1, Traccia 2, Traccia 3, Traccia 4, Traccia 5, Traccia 6, Traccia 7, Traccia 8.
Corso di Matematica I per Ingegneria Meccanica e Gestionale (2016/17)
Contenuti della pagina
News
Pubblicati i risultati del secondo appello invernale. Vedi
Pubblicati i risultati del primo appello invernale. Vedi
Descrizione del corso
Prerequisiti
È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.
Contenuti
Il corso coprirà i seguenti argomenti:
- Successioni e serie numeriche.
- Funzioni reali a una variabile: continuità, derivate e integrali.
Più dettagliatamente, qui sotto sono elencati i contenuti delle singole lezioni:
- 14/09/2016 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
- 15/09/2016 – Relazioni: relazioni d’ordine, relazioni di equivalenza. Funzioni: iniettività, suriettività, biezioni, monotonia. Insiemi numerici.
- 16/09/2016 – Massimi e minimi. Maggiorante, minorante, estremo superiore e inferiore di un insieme ordinato.
- 21/09/2016 – San Matteo. Non c’è lezione.
- 22/09/2016 – Rappresentazione cartesiana. Vettori e operazioni tra vettori. Spazi vettoriali e sottospazi. Combinazioni lineari. Dipendenza lineare.*
- 23/09/2016 – Base di uno spazio vettoriale, dimensione.*
- 28/09/2016 – Teorema di Rouché-Capelli in forma vettoriale.* Disequazioni algebriche.
- 29/09/2016 – Disequazioni irrazionali, esponenziali e logaritmiche.
- 30/09/2016 – Funzioni trigonometriche. Cenni sui numeri complessi.
- 05/10/2016– Forma trigonometrica dei numeri complessi. Potenze radici di numeri complessi. Dominio di una funzione. Principio di Induzione.
- 06/10/2016 – Esercitazione.
- 07/10/2016 – Descrizioni analitiche della retta: equazione implicita, esplicita e parametrica. Fascio di rette per un punto.
- 12/10/2016 – Esercitazione.
- 13/10/2016 – Prima prova intermedia.
- 14/10/2016 – Definizione di successione e convergenza di una successione.
- 19/10/2016 – Successioni convergenti divergenti e non regolari.
- 20/10/2016 – Teorema della permanenza del segno e sue conseguenze.
- 21/10/2016 – Criteri di confronto per le successioni e limiti notevoli: potenze, radici e trigonometrici.
- 26/10/2016 – Successioni monotone e loro proprietà. Il numero di Nepero e.
- 26/10/2016 – Esercitazione.
- 27/10/2016 – Teorema di Bolzano-Weierstrass. Successioni di Cauchy e loro proprietà. Stima degli errori.
- 28/10/2016 – Limiti di funzioni.
- 02/11/2016 – Operazioni con i limiti di funzioni. Limiti di funzioni composte.
- 03/11/2016 – Funzioni continue, discontinuità. Teoremi sulle funzioni continue: permanenza del segno, esistenza degli zeri, esistenza dei valori intermedi.
- 04/11/2016 – Teorema di Weierstrass. Relazioni tra monotonia e funzioni continue. Grafico di una funzione.
- 09/11/2016 – Derivate: interpretazione fisica e geometrica.
- 10/11/2016 – Formule per le derivate: somma, prodotto e frazione; funzione composta, funzione inversa. Teorema di Fermat.
- 11/11/2016 – Teorema di Rolle e teorema di Lagrange. Esercitazione.
- 16/11/2016 – Uso delle derivate per la ricerca di massimi e minimi.
- 17/11/2016 – Seconda prova intermedia.
- 18/11/2016 – Derivate seconde. Criterio di convessità. Teorema di de l’Hôpital (senza dimostrazione).
- 23/11/2016 – Integrale definito. Idea intuitiva e definizione tramite somme integrali inferiori e superiori.
- 24/11/2016 – Proprietà degli integrali definiti. Teorema di Cantor e integrabili delle funzioni continue.
- 25/11/2016 – Teorema della media. Integrali indefiniti.
- 30/11/2016 – Non c’è lezione.
- 01/12/2016 – Integrali elementari. Scomposizione in somma. Integrazione per parti. Integrazione per sostituzione.
- 02/12/2016 – Calcolo di aree e di volumi di solidi di rotazione. Integrali impropri.
- 07/12/2016 – Formula di Taylor con resto di Peano, resto integrale e resto di Lagrange (quest’ultimo senza dimostrazione).
- 07/12/2016 – Integrali di funzioni razionali e sostituzioni di Eulero.
- 08/12/2016 – Festa dell’Immacolata. Non c’è lezione.
- 09/12/2016 – Non c’è lezione.
- 14/12/2016 – Introduzione alle serie. Criterio di Cauchy e teorema del resto.
- 15/12/2016 – Serie geometrica e serie armonica generalizzata. Criterio del confronto e criterio degli infinitesimi.
- 16/12/2016 – Criterio della radice. Criterio di convergenza per serie a segni alternati. Convergenza assoluta.
- 21/12/2016 – Esercitazione.
- 21/12/2016 – Esercitazione.
- 22/12/2016 – Terza prova intermedia.
- 23/12/2016 – Esercitazione.
Due lezioni perse verranno recuperate mercoledì 7 dicembre e mercoledì 21 dicembre. Entrambe in aula E dalle 16:30 alle 18:30.
La lezione persa per San Matteo verrà recuperata mercoledì 26 ottobre alle 16:30 in Aula E.
*Gli argomenti di algebra lineare non sono richiesti né all’esame scritto né all’orale.
Materiale del corso
- Il testo di riferimento principale è: Paolo Marcellini, Carlo Sbordone. Analisi Matematica. Vol 1, Liguori Editore.
- Un utile complemento è dato dal rispettivo libro di esercitazioni: Paolo Marcellini, Carlo Sbordone. Esercitazioni di Matematica. Vol 1 e 2, Liguori Editore.
Aspetti pratici
- Docente: Luca Spada
Crediti/ore:
- Durata: 90 ore.
- CFU: 9
Date/aule:
- Le lezioni cominceranno il 13 settembre.
- Ci sono tre lezioni a settimana:
- mercoledì dalle 8:45 alle 10:30, aula A.
- giovedì dalle 14:30 alle 16:30, aula A.
- venerdì dalle 8:45 alle 10:30, aula A.
Esercizi/Esami
Esame:
- Ci saranno tre prove di esonero durante il corso. Chi conseguirà un voto medio pari o superiore a 18 potrà sostenere direttamente l’esame orale. Sarà comunque possibile per tutti sostenere l’esame scritto a gennaio e ai seguenti appelli.
- È necessario presentarsi all’esame con un documento di riconoscimento.
- Per poter partecipare all’esame è assolutamente necessario registrarsi su esse3, in caso di difficoltà rivolgersi alle segreterie.
- All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
- Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.
- L’esame orale verte su tutti gli argomenti trattati durante il corso. Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso. In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi). Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).
Appelli d’esame:
- Primo appello invernale
- scritto: lunedì 23 gennaio 2017, ore 9:00 (aula A). Traccia con soluzioni. Esiti 23/01/2017.
-
- orale (i candidati verranno chiamati in ordine alfabetico, cominciando da chi ha superato le prove intermedie, ci saranno circa 20 orali al giorno):
- 24 gennaio dalle 15:00 alle 19:00 Aula E.
- 25 gennaio dalle 15:00 alle 19:00 Aula E.
- 26 gennaio dalle 15:00 alle 19:00 Aula F.
- 27 gennaio dalle 9:00 alle 12:00 Aula A.
- orale (i candidati verranno chiamati in ordine alfabetico, cominciando da chi ha superato le prove intermedie, ci saranno circa 20 orali al giorno):
- Secondo appello invernale
- scritto: martedì 14 febbraio 2017, ore 9:00 Aula A. Traccia con soluzioni. Esiti 14/02/2017.
- orale (i candidati verranno chiamati in ordine alfabetico):
- mercoledì 15 febbraio 9:30 – 13:00 aula 107.
- mercoledì 15 febbraio 15:00 – 19:00 aula 133.
- giovedì 16 febbraio 9:30 – 12:30 aula 129.
- giovedì 16 febbraio 15:00 – 19:00 aula 129.
- Primo appello estivo.
- scritto: lunedì 12 giugno, ore 9:00 aula M. Traccia con soluzioni. Esiti 12/06/2017.
- orale: a partire da mercoledì 14 ore 10:00. Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–)
- Secondo appello estivo.
- scritto: lunedì 3 luglio, ore 9:00 aula A. Traccia con soluzioni. Esiti 2/7/17.
- orale: martedì 4 ore 9:00. Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–).
- Terzo appello estivo
- scritto: lunedì 4 settembre, ore 9:00 aula I. Traccia con soluzioni. Esiti 4/9/17
- orale: a partire da martedì 12 ore 10:00. Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–)
- Primo appello autunnale (RISERVATO a studenti FUORI CORSO)
- scritto: mercoledì 25 ottobre, ore 9:00.
- Secondo appello autunnale (RISERVATO a studenti FUORI CORSO)
- scritto: 21 dicembre 2017, ore 9:00. Aule 21, 22, 23, 24.
- orale: immediatamente dopo l’esame scritto.
- Pre-appello estivo autunnale (RISERVATO a studenti ISCRITTI AL SECONDO ANNO)
- scritto: 21 dicembre 2017, ore 9:00. Aule 21, 22, 23, 24.
- orale: immediatamente dopo l’esame scritto.
Prove intermedie:
- Esempi per la prima prova: Esempio 1, Esempio 2.
- prima prova: giovedì 13 ottobre, ore 14:30. Traccia A con soluzioni. Traccia B con soluzioni. Esiti prima prova.
- seconda prova: giovedì 17 novembre, ore 14:30. Traccia A con soluzioni. Traccia B con soluzioni. Esiti seconda prova.
- terza prova: giovedì 22 dicembre, ore 14:30. Terza prova intermedia – Traccia A con soluzioni. Terza prova intermedia – Traccia B con soluzioni.
- Esito finale prove inter-corso.
- Sono ammessi all’orale tutti e soli coloro che hanno conseguito un voto medio pari o superiore a 18.
- Per sostenere l’orale è comunque necessario registrarsi per l’appello su esse3 (come per fare lo scritto, ma presentandosi direttamente all’orale).
- È possibile presentarsi agli esami orali sia di gennaio che di febbraio.
Matematica I per Scienze Ambientali (2016/17)
Contenuti della pagina
News
- A partire dall’appello di settembre 2017 (incluso) il responsabile del corso Matematica II sarà la prof.ssa Chiara Nicotera. Per tutte le informazioni riguardo al corso, come ad esempio programma, modalità di esame, etc., rivolgersi a lei. Tutte le richieste riguardanti il corso Matematica I possono continuare a essere inviate al prof. Luca Spada.
- Gli studenti di VCA che hanno nel piano di studi l’esame Matematica (12 CFU) dovranno prima sostenere l’esame di Matematica I (6 CFU) con il prof. Spada e successivamente quello di Matematica II (6 CFU) con la prof.ssa Nicotera.
- Disponibile il Programma di Matematica I e II e di Matematica (12 CFU) per gli studenti del corso di laurea in VCA. Per gli studenti del corso di laurea in VCA l’esame prevede una prova scritta e una orale.
Descrizione del corso
Prerequisiti
È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.
Contenuti
Il corso coprirà i seguenti argomenti:
- Algebra lineare.
- Funzioni reali a una variabile: continuità e derivate, studio di funzione.
Durante il corso qui sotto saranno elencati i contenuti delle singole lezioni:
- 04/10/2016 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
- 06/10/2016 – Calcolo combinatorio.
- 11/10/2016 – Definizione di funzione. Vettori: prodotto per uno scalare e prodotto scalare; combinazione lineare.
- 13/10/2016 – Trigonometria: funzioni seno e coseno e loro proprietà. Interpretazione del prodotto scalare. Dipendenza lineare tra vettori.
- 18/10/2016 – Spazio vettoriale. Base di un insieme di vettori. Matrici: somma e prodotto righe per colonne.
- 20/10/2016 – Matrici di rotazione. Determinante di una matrice.
- 25/10/2016 – Soluzioni di sistemi lineari omogenei e completi. Teorema di Rouché-Capelli.
- 27/10/2016 – Diagonalizzazione di matrici. Autovalori e autovettori.
- 1/11/2016 – Ognissanti.
- 3/11/2016 – Funzioni reali in una variabile. Dominio di una funzione. Iniettività e suriettività. Funzioni composte. Funzioni monotone.
- 8/11/2016 – Funzioni elementari: funzioni lineari e funzioni potenza.
- 10/11/2016 – Funzioni elementari: esponenziale e logaritmo.
- 15/11/2016 – Limiti di funzioni. Proprietà dei limiti.
- 17/11/2016 – Limiti notevoli. Funzioni continue. Ordini di infinito e di infinitesimo. Successioni.
- 22/11/2016 – Limiti destro e sinistro. Tipi di discontinuità.
- 24/11/2016 – Derivate. Regolo per il calcolo delle derivate. Uso delle derivate per trovare massimi e minimi locali e lo studio della convessità. Cenni sulla formula di Taylor.
- 29/11/2016 – Non ci sarà lezione.
- 01/12/2016 – Teorema di de l’Hôpital. Applicazioni delle derivate.
- 06/12/2016 – Esercitazione.
- 08/12/2016 – Festa dell’Immacolata.
- 13/12/2016 – Tutorato.
- 15/12/2016 – Prova finale.
- 20/12/2016 – Tutorato.
- 22/12/2016 – Tutorato.
Materiale del corso
- Il testo di riferimento principale è: Dario Benedetto, Mirko Degli Espositi, Carlotta Maffei. Matematica per le Scienze della Vita. Casa Editrice Ambrosiana. 2008.
Programma di Matematica I e II (6+6 CFU) e di Matematica (12 CFU) per gli studenti del corso di laurea in VCA.
Aspetti pratici
- Docente: Luca Spada
Crediti/ore:
- Durata: 48 ore (10 settimane).
- CFU: 6
- Frequenza: non obbligatoria.
Date/aule:
- Le lezioni cominceranno il 4 ottobre 2016.
- Ci sono due lezioni a settimana:
- martedì dalle 14:00 alle 16:00, Aula F7
- giovedì dalle 9:00 alle 12:00, Aula F7.
- Il tutorato si tiene ogni mercoledì e venerdì dalle 16:00 alle 18:00 in aula F7 a partire da mercoledì 2 novembre.
OFA
Le lezioni dell’OFA si terranno a partire da martedì 10 gennaio con il seguente orario:
- Martedì 14:00 – 16:00 Aula F7
- Mercoledì 14:00 – 16:00 Aula F7
- Giovedì 10:00 – 12:00 Aula F7
Esercizi/Esami
Eventuali esercizi assegnati durante il corso possono essere trovati qui sotto.
- Richiami ed esercizi sulle disequazioni.
- Traccia della prima prova intermedia.
- Traccia della seconda prova intermedia.
- Traccia della terza prova intermedia.
- Esito finale prove intermedie.
- Per sostenere l’orale è necessario registrarsi per l’appello su esse3 (come per fare lo scritto, ma presentandosi direttamente all’orale).
- Gli esami orali si svolgeranno il 18, 19 e 20 gennaio dalle 15:00 alle 18:00, nell’aula F7.
Appelli d’esame:
- 17 gennaio 2017, ore 15:00, aula F7. Traccia della prova scritta 2017-01-17. Risultati 2017-01-17. Gli esami orali si svolgeranno il 18, 19 e 20 gennaio dalle 15:00 alle 18:00, nell’aula F7.
- 7 febbraio 2017, ore 15:00, aula F7. Traccia della prova scritta 2017-02-07. Risultati 2017-02-07. Gli esami orali si terranno lunedì 13 e martedì 14 alle 16:00 (Aula F7).
- 4 aprile 2017 (riservato a fuoricorso), ore 15:00, aula F7. Traccia della prova scritta 2017-04-04. Risultati 2017-04-04. Gli esami orali si terranno mercoledì 5 alle 9:00 (Studio prof. Spada, stanza 25 DipMat).
- 13 giugno 2017, ore 15:00, aula F7. Gli esami orali si terranno mercoledì 14 alle 15:00 (Aula F7). Traccia della prova scritta 2017-06-13. Esiti 13-6-2017.
- 4 luglio 2017, ore 15:00, aula F7. Gli esami orali si terranno mercoledì 5 alle 9:00 (Studio prof. Spada, stanza 25 DipMat). Traccia della prova scritta 2017-06-13. Esiti-4-7-17.
- 19 settembre 2017, ore 15:00, aula F7. Gli esami orali si terranno mercoledì 20 alle 15:30 (Studio prof. Spada, stanza 25 DipMat). Traccia della prova scritta 2017-09-19. Esiti-19-9-17.
- 7 novembre 2017 (riservato a fuoricorso), ore 15:00, aula F7. Traccia della prova scritta 2017-11-7. Esiti-7-11-17.
- 20 dicembre 2017 (riservato a studenti dal II anno in poi), ore 15:00, aula F2. Gli esami orali si terranno giovedì 21 alle 16:30 (Studio prof. Spada, stanza 25 DipMat). Traccia della prova scritta 2017-12-20. Esiti.
Informazioni sugli esami:
- L’esame è scritto e orale.
- È sempre necessario presentarsi agli esami con un documento di riconoscimento.
- È assolutamente necessario registrarsi su esse3 per poter sostenere l’esame, anche per chi deve solo sostenere l’orale.
- All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
- Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.